LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
Citation: LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131

Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage

More Information
  • Received Date: May 04, 2020
  • Revised Date: November 08, 2020
  • Available Online: November 29, 2020
  • Focusing on such problems as poor high-temperature stability of drilling fluids and downhole instruments in the development of deep gas and oil, phase change materials were introduced into drilling fluids for the first time to model the cooling of drilling fluids in deep wells based on phase change heat storage principle. First, the heat storage characteristics of the phase change materials were investigated on the basis of evaluating the thermophysical properties of the phase change materials. Then, the influence of phase change materials on the rheological and filtration properties of drilling fluids was comparatively evaluated. Finally, the experimental curves for the cooling performance of drilling fluids were measured using a self-made experimental device of drilling fluid circulating simulation. The results showed that the phase change temperature and the latent heat of phase change for the phase change materials 1#–3#were approximately 120–145 °C and 90.3–280.6 J/g, respectively; and the phase change material 2# displayed the highest latent heat and the best heat storage performance of the phase change, exhibiting a compatibility withdrilling fluid. Specifically, the viscosity, shear force, and filtration of the drilling fluids were basically unchanged when the concentration of the phase change material 2# increased to 12%, and the circulating temperature of the drilling fluids could be reduced by about 20 ℃, correspondingly. In addition, the phase change material 2# exhibited excellent reuse properties. In conclusion, the circulating temperature of the drilling fluids could be reduced by referring to the principle of phase change heat storage of phase change materials, which could provide a new technical thinking to apply to cooling technologies for high-temperature drilling fluids in deep wells.
  • [1]
    丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
    [2]
    徐春春,邹伟宏,杨跃明,等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学,2017,28(8):1139–1153.

    XU Chunchun, ZOU Weihong, YANG Yueming, et al. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139–1153.
    [3]
    石昕,戴金星,赵文智. 深层油气藏勘探前景分析[J]. 中国石油勘探,2005,10(1):1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001

    SHI Xin, DAI Jinxing, ZHAO Wenzhi. Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petroleum Exploration, 2005, 10(1): 1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001
    [4]
    闫光庆,张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术,2013,41(2):1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001
    [5]
    孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73–81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 73–81.
    [6]
    刘清友,湛精华,黄云,等. 深井、超深井高温高压井下工具研究[J]. 天然气工业,2005,25(10):73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025

    LIU Qingyou, ZHAN Jinghua, HUANG Yun, et al. Study on high temperature and pressure down-hole tools of deep and super-deep wells[J]. Natural Gas Industry, 2005, 25(10): 73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025
    [7]
    杨晓峰. 抗高温sureshot MWD在兴古7块的应用[J]. 石油钻探技术,2012,40(1):119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024

    YANG Xiaofeng. Application of high temperature resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024
    [8]
    陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8.

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.
    [9]
    马青芳. 钻井液冷却技术及装备综述[J]. 石油机械,2016,44(10):42–46.

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery, 2016, 44(10): 42–46.
    [10]
    MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42–48.
    [11]
    赵江鹏,孙友宏,郭威. 钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J]. 探矿工程(岩土钻掘工程),2010,37(9):1–5.

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(9): 1–5.
    [12]
    SALGADO SANCHEZ P, EZQUERRO J M, Porter J, et al. Effect of thermo-capillary convection on the melting of phase change materials in microgravity: experiments and simulations[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119717. doi: 10.1016/j.ijheatmasstransfer.2020.119717
    [13]
    宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015

    SONG Jianjian, XU Mingbiao, WANG Xiaoliang,et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015
    [14]
    MIAO Chunyan, LU Gang, YAO Youwei, et al. Preparation of shape-stabilized phase change materials as temperature-adjusting powder[J]. Frontiers of Materials Science in China, 2007, 1(3): 284–287. doi: 10.1007/s11706-007-0051-8
    [15]
    孙茹茹,李化建,黄法礼,等. 相变材料在水泥基材料中的应用[J]. 硅酸盐通报,2020,39(3):662–668, 676.

    SUN Ruru, LI Huajian, HUANG Fali, et al. Application of phase change materials in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 662–668, 676.
  • Related Articles

    [1]ZHU Zuyang. Numerical Simulation and Test of Velocity Imaging for Remote Detection Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35-40. DOI: 10.11911/syztjs.2022113
    [2]ZHOU Xiaohui, SU Yinao, NIU Chengcheng, CHENG Yuanfang, WEI Jia. Performance Test and Numerical Simulation Research on Vacuum Insulated Casings for Permafrost Protection[J]. Petroleum Drilling Techniques, 2021, 49(3): 21-26. DOI: 10.11911/syztjs.2021050
    [3]YOU Lijun, SHAO Jiaxin, GAO Xinping, KANG Yili, WANG Furong. Simulation Tests of Effective Stress Changes in Gas Storage during Injection and Production[J]. Petroleum Drilling Techniques, 2020, 48(6): 104-108. DOI: 10.11911/syztjs.2020102
    [4]LI Lilin, YANG Jin, LU Baoping, KE Ke, WANG Lei, CHEN Kejin. Research on Stratum Settlement and Wellhead Stability in Deep Water during Hydrate Production Testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61-68. DOI: 10.11911/syztjs.2020095
    [5]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [6]XU Liangbin, LI Chaowei, WANG Yu, XIAO Kaiwen, SHENG Leixiang. An Experimental Study on the Heterometallic Corrosion Mechanism of 30CrMo Steel/625 Alloy for Underwater X-Trees[J]. Petroleum Drilling Techniques, 2019, 47(4): 116-121. DOI: 10.11911/syztjs.2019034
    [7]HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
    [8]Yang Huanqiang, Wang Ruihe, Zhou Weidong, Li Luopeng, Gui Jie. Testing and Simulating the Effect on Fracturing of Port Parameters of a Cemented Sliding Sleeve[J]. Petroleum Drilling Techniques, 2015, 43(2): 54-58. DOI: 10.11911/syztjs.201502010
    [9]Ke Ke, Zhang Hui, Zhou Yuyang, Wang Lei, Feng Shilun. The Development of Testing Simulators for Conductor Jets Running in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 33-37. DOI: 10.11911/syztjs.201502006
    [10]Fan Yongtao, Gao Deli, Zhang Hui, Fang Jun. Simulation and Experimental Research on Mechanical Properties of Bottom Hole Assembly[J]. Petroleum Drilling Techniques, 2013, 41(3): 80-84. DOI: 10.3969/j.issn.1001-0890.2013.03.015
  • Cited by

    Periodical cited type(2)

    1. 李美春,丁扬,孙金声,吕开河,黄贤斌,王建华,张洁,杨丽霞. 井筒降温技术研究现状及未来展望. 石油学报. 2025(04): 789-800 .
    2. 宋先知,姚学喆,许争鸣,周蒙蒙,王庆辰. 超深井控温钻井隔热涂层参数影响机制研究. 石油钻探技术. 2024(02): 126-135 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (654) PDF downloads (137) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return