SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048
Citation: SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048

Research on the Influence Mechanism of Heat-Insulating Coating Parameters in Temperature-Controlled Drilling of Ultra-Deep Well

More Information
  • Received Date: February 20, 2024
  • Revised Date: March 06, 2024
  • Available Online: April 07, 2024
  • To reveal the influence of the heat-insulating coating on the wellbore temperature field of ultra-deep wells, the comprehensive heat transfer coefficient of the drill pipe was calculated in the form of heat transfer resistance according to the thermal conductivity characteristics of the heat-insulating coating and the drill pipe. A transient heat transfer model of the wellbore-formation of the ultra-deep well considering the heat-insulating coating inside the drill pipe was developed. The model was discretized by the finite difference method and solved iteratively by the Gauss-Seidel algorithm. The accuracy of the model was validated through theoretical analysis and field data. The results show that the thermal conductivity coefficient of the heat-insulating coating inside the drill pipe significantly affects the bottom hole circulating temperature. A decrease in conductivity coefficient leads to a rapid drop in wellbore annular temperature and an increase in exit temperature. The thickness and length of the heat-insulating coating also greatly impact wellbore temperature, with greater thickness resulting in a lower bottom hole circulating temperature. These findings offer essential theoretical support for wellbore temperature control and optimization of heat-insulating drill pipe parameters during ultra-deep well drilling.

  • [1]
    匡立春,支东明,王小军,等. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向[J]. 中国石油勘探,2021,26(4):1–16.

    KUANG Lichun, ZHI Dongming, WANG Xiaojun, et al. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang Region[J]. China Petroleum Exploration, 2021, 26(4): 1–16.
    [2]
    王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27–35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10 000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27–35.
    [3]
    李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
    [4]
    汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.
    [5]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
    [6]
    邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94.
    [7]
    汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.
    [8]
    KHALED M S, WANG Ningyu, ASHOK P, et al. Strategies for prevention of downhole tool failure caused by high bottomhole temperature in geothermal and high-pressure/high-temperature oil and gas wells[J]. SPE Drilling & Completion, 2023, 38(2): 243–260.
    [9]
    SPINDLER R. Analytical models for wellbore-temperature distribution[J]. SPE Journal, 2011, 16(1): 125–133. doi: 10.2118/140135-PA
    [10]
    HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 127–136. doi: 10.1016/j.petrol.2012.03.021
    [11]
    AL SAEDI A Q, FLORI R E, KABIR C S. Influence of frictional or rotational kinetic energy on wellbore-fluid/temperature profiles during drilling operations[J]. SPE Drilling & Completion, 2019, 34(2): 128–142.
    [12]
    WU Xingru, XU Boyue, LING Kegang. A semi-analytical solution to the transient temperature behavior along the vertical wellbore after well shut-in[J]. Journal of Petroleum Science and Engineering, 2015, 131: 122–130. doi: 10.1016/j.petrol.2015.04.034
    [13]
    XU Boyue, WU Xingru, GAO Yonghui, et al. A semi-analytical solution to the transient temperature behavior along the wellbore and its applications in production management[R]. SPE 170631, 2014.
    [14]
    PENG Yu, ZHAO Jinzhou, SEPEHRNOORI K, et al. Study of the heat transfer in the wellbore during acid/hydraulic fracturing using a semianalytical transient model[J]. SPE Journal, 2019, 24(2): 877–890. doi: 10.2118/194206-PA
    [15]
    赵金洲,彭瑀,李勇明,等. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业,2016,36(1):68–75.

    ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A semi-analytic model of wellbore temperature field based on double-layer unsteady heat conducting process[J]. Natural Gas Industry, 2016, 36(1): 68–75.
    [16]
    YANG Mou, TANG Daqian, CHEN Yuanhang, et al. Determining initial formation temperature considering radial temperature gradient and axial thermal conduction of the wellbore fluid[J]. Applied Thermal Engineering, 2019, 147: 876–885. doi: 10.1016/j.applthermaleng.2018.11.006
    [17]
    MAO Liangjie, WEI Changjiang, JIA Hai, et al. Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters[J]. Energy, 2023, 284: 129341. doi: 10.1016/j.energy.2023.129341
    [18]
    张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85.

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85.
    [19]
    LI Gao, YANG Mou, MENG Yingfeng, et al. Transient heat transfer models of wellbore and formation systems during the drilling process under well kick conditions in the bottom-hole[J]. Applied Thermal Engineering, 2016, 93: 339–347. doi: 10.1016/j.applthermaleng.2015.09.110
    [20]
    赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69–75.

    ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells[J]. Petroleum Drilling Techniques, 2022, 50(4): 69–75.
    [21]
    田得强,李中,许亮斌,等. 深水高温高压气井钻井循环温度压力耦合计算与分析[J]. 中国海上油气,2022,34(5):149–157.

    TIAN Deqiang, LI Zhong, XU Liangbin, et al. Coupling calculation and analysis of circulating temperature pressure distribution in deepwater HTHP gas well drilling[J]. China Offshore Oil and Gas, 2022, 34(5): 149–157.
    [22]
    CHEN Xin, HE Miao, XU Mingbiao, et al. Fully transient coupled prediction model of wellbore temperature and pressure for multi-phase flow during underbalanced drilling[J]. Geoenergy Science and Engineering, 2023, 223: 211540. doi: 10.1016/j.geoen.2023.211540
    [23]
    XU Zhengming, CHEN Xuejiao, SONG Xianzhi, et al. Gas-kick simulation in oil-based drilling fluids with nonequilibrium gas-dissolution and -evolution effects[J]. SPE Journal, 2021, 26(5): 2549–2569. doi: 10.2118/206717-PA
    [24]
    XU Zhengming, WU Kan, SONG Xianzhi, et al. A unified model to predict flowing pressure and temperature distributions in horizontal wellbores for different energized fracturing fluids[J]. SPE Journal, 2019, 24(2): 834–856.
    [25]
    王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112.

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112.
    [26]
    王金磊,江波,黄范勇. 井筒降温技术研究综述[J]. 新疆石油科技,2015,25(2):9–11.

    WANG Jinlei, JIANG Bo, HUANG Fanyong. A review of wellbore cooling technology[J]. Xinjiang Petroleum Science & Technology, 2015, 25(2): 9–11.
    [27]
    吴鹏程,钟成旭,严俊涛,等. 深层页岩气水平井钻进中井筒–地层瞬态传热模型[J]. 石油钻采工艺,2022,44(1):1–8.

    WU Pengcheng, ZHONG Chengxu, YAN Juntao, et al. Well-formation transient heat transfer model during drilling of deep shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2022, 44(1): 1–8.
    [28]
    梁晓阳,赵聪,赵向阳,等. 基于热管技术的钻井液地面降温系统研制[J]. 石油机械,2023,51(3):24–32.

    LIANG Xiaoyang, ZHAO Cong, ZHAO Xiangyang, et al. Development of the drilling fluid surface cooling system based on heat pipes[J]. China Petroleum Machinery, 2023, 51(3): 24–32.
    [29]
    李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21.

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21.
    [30]
    贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.

    JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.
    [31]
    王建龙,于志强,苑卓,等. 四川盆地泸州区块深层页岩气水平井钻井关键技术[J]. 石油钻探技术,2021,49(6):17–22.

    WANG Jianlong, YU Zhiqiang, YUAN Zhuo, et al. Key technologies for deep shale gas horizontal well drilling in Luzhou Block of Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(6): 17–22.
    [32]
    刘昌弟,孙元伟,程怀标. 南海琼东南盆地高温低压大位移井钻井技术[J]. 特种油气藏,2013,20(6):80–83.

    LIU Changdi, SUN Yuanwei, CHENG Huaibiao. High temperature, low pressure and extended reach well drilling in the southeast Hainan Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(6): 80–83.
    [33]
    刘均一,陈二丁,李光泉,等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术,2021,49(1):53–58.

    LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53–58.
    [34]
    肖雨阳. 高含水气井井下节流工艺参数优化[D]. 荆州:长江大学,2023.

    XIAO Yuyang. Optimization of downhole throttling process parameters for gas wells with high water content[D]. Jingzhou: Yangtze University, 2023.
    [35]
    闫新. 高含水气井井下节流特性研究[D]. 西安:西安石油大学,2021.

    YAN Xin. Study on downhole throttling characteristics of high water-cut gas wells[D]. Xi’an: Xi’an Shiyou University, 2021.
    [36]
    余朝毅. 井下节流机理研究及现场应用[D]. 成都:西南石油大学,2004.

    YU Zhaoyi. Research on downhole throttling mechanism and field application[D]. Chengdu: Southwest Petroleum University, 2004.
    [37]
    SOPRANI S, ENGELBRECHT K, NØRGAARD A J. Active cooling and thermal management of a downhole tool electronics section[C]//Proceedings of the 24th IIR International Congress of Refrigeration. Paris: International Institute of Refrigeration, 2015: 85.
    [38]
    CHIN Y D, KVAERNER A. Cool-down-temperature overshoot phenomenon in subsea flowline and riser systems[R]. OTC 15253, 2003.
    [39]
    BONNISSEL M, OZOUX V, COUPRIE S, et al. Gel based materials for high insulation and long cool down time in deep water[R]. OTC 16504, 2004.
    [40]
    JANOFF D, MCKIE N, DAVALATH J. Prediction of cool down times and designing of insulation for subsea production equip-ment[R]. OTC 16507, 2004.
    [41]
    DAVALATH J, STEVENS K. Cool-down thermal performance of subsea systems based on Gulf of Mexico field experience[R]. OTC 17972, 2006.
    [42]
    刘珂,高文凯,洪迪峰,等. 随钻仪器井下降温系统阻热性能研究[J]. 石油机械,2020,48(8):23–30.

    LIU Ke, GAO Wenkai, HONG Difeng, et al. Study on thermal resistance performance of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2020, 48(8): 23–30.
    [43]
    刘珂,苏义脑,高文凯,等. 随钻仪器井下降温系统冷却效果数值研究[J]. 石油机械,2022,50(7):18–25.

    LIU Ke, SU Yinao, GAO Wenkai, et al. Numerical study on cooling effect of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2022, 50(7): 18–25.
    [44]
    刘珂,高文凯,窦修荣,等. 随钻仪器井下降温系统传热特性研究[J]. 石油机械,2022,50(2):23–32.

    LIU Ke, GAO Wenkai, DOU Xiurong, et al. Heat transfer characteristic study on downhole cooling system of drilling instrument[J]. China Petroleum Machinery, 2022, 50(2): 23–32.
    [45]
    杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
  • Related Articles

    [1]HUANG Zhe, ZHANG Weiqiang, WU Zhonghua. Status and Development Trend of Digital Bit Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 124-129. DOI: 10.11911/syztjs.2024086
    [2]WANG Zhonghua. Current Situation and Development Suggestions for Drilling Fluid Technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114-123. DOI: 10.11911/syztjs.2023028
    [3]WANG Minsheng. Development Direction and Suggestions for Carbon EmissionReduction during Drilling and Completion[J]. Petroleum Drilling Techniques, 2022, 50(6): 1-6. DOI: 10.11911/syztjs.2022106
    [4]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [5]REN Hong. Current Status and Development Recommendations for Gas Hydrate Sampling Technology in the South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(4): 89-93. DOI: 10.11911/syztjs.2020045
    [6]SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
    [7]CHEN Zuo, XU Guoqing, JIANG Manqi. The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8. DOI: 10.11911/syztjs.2019110
    [8]MA Kaihua, HOU Lizhong, ZHANG Hongbao. Drilling Completion Technologies of Sinopec Overseas Oilfields: Status Quo of Technology Development Suggestions[J]. Petroleum Drilling Techniques, 2018, 46(5): 1-7. DOI: 10.11911/syztjs.2018128
    [9]PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling Technology Progress and Recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9-15. DOI: 10.11911/syztjs.2018119
    [10]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
  • Cited by

    Periodical cited type(2)

    1. 杨玉贵,邢希金,孙文化. 强分散性地层大位移井钻井液关键技术研究. 石油化工应用. 2022(05): 15-20 .
    2. 孟也,李相方,何敏侠,蒋明洁. 气泡卡断过程中的喉道液领形态与聚并模型. 断块油气田. 2019(05): 632-637 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return