Citation: | SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048 |
To reveal the influence of the heat-insulating coating on the wellbore temperature field of ultra-deep wells, the comprehensive heat transfer coefficient of the drill pipe was calculated in the form of heat transfer resistance according to the thermal conductivity characteristics of the heat-insulating coating and the drill pipe. A transient heat transfer model of the wellbore-formation of the ultra-deep well considering the heat-insulating coating inside the drill pipe was developed. The model was discretized by the finite difference method and solved iteratively by the Gauss-Seidel algorithm. The accuracy of the model was validated through theoretical analysis and field data. The results show that the thermal conductivity coefficient of the heat-insulating coating inside the drill pipe significantly affects the bottom hole circulating temperature. A decrease in conductivity coefficient leads to a rapid drop in wellbore annular temperature and an increase in exit temperature. The thickness and length of the heat-insulating coating also greatly impact wellbore temperature, with greater thickness resulting in a lower bottom hole circulating temperature. These findings offer essential theoretical support for wellbore temperature control and optimization of heat-insulating drill pipe parameters during ultra-deep well drilling.
[1] |
匡立春,支东明,王小军,等. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向[J]. 中国石油勘探,2021,26(4):1–16.
KUANG Lichun, ZHI Dongming, WANG Xiaojun, et al. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang Region[J]. China Petroleum Exploration, 2021, 26(4): 1–16.
|
[2] |
王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27–35.
WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10 000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27–35.
|
[3] |
李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.
LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
|
[4] |
汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.
WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.
|
[5] |
苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.
SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
|
[6] |
邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.
DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94.
|
[7] |
汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.
WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.
|
[8] |
KHALED M S, WANG Ningyu, ASHOK P, et al. Strategies for prevention of downhole tool failure caused by high bottomhole temperature in geothermal and high-pressure/high-temperature oil and gas wells[J]. SPE Drilling & Completion, 2023, 38(2): 243–260.
|
[9] |
SPINDLER R. Analytical models for wellbore-temperature distribution[J]. SPE Journal, 2011, 16(1): 125–133. doi: 10.2118/140135-PA
|
[10] |
HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 127–136. doi: 10.1016/j.petrol.2012.03.021
|
[11] |
AL SAEDI A Q, FLORI R E, KABIR C S. Influence of frictional or rotational kinetic energy on wellbore-fluid/temperature profiles during drilling operations[J]. SPE Drilling & Completion, 2019, 34(2): 128–142.
|
[12] |
WU Xingru, XU Boyue, LING Kegang. A semi-analytical solution to the transient temperature behavior along the vertical wellbore after well shut-in[J]. Journal of Petroleum Science and Engineering, 2015, 131: 122–130. doi: 10.1016/j.petrol.2015.04.034
|
[13] |
XU Boyue, WU Xingru, GAO Yonghui, et al. A semi-analytical solution to the transient temperature behavior along the wellbore and its applications in production management[R]. SPE 170631, 2014.
|
[14] |
PENG Yu, ZHAO Jinzhou, SEPEHRNOORI K, et al. Study of the heat transfer in the wellbore during acid/hydraulic fracturing using a semianalytical transient model[J]. SPE Journal, 2019, 24(2): 877–890. doi: 10.2118/194206-PA
|
[15] |
赵金洲,彭瑀,李勇明,等. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业,2016,36(1):68–75.
ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A semi-analytic model of wellbore temperature field based on double-layer unsteady heat conducting process[J]. Natural Gas Industry, 2016, 36(1): 68–75.
|
[16] |
YANG Mou, TANG Daqian, CHEN Yuanhang, et al. Determining initial formation temperature considering radial temperature gradient and axial thermal conduction of the wellbore fluid[J]. Applied Thermal Engineering, 2019, 147: 876–885. doi: 10.1016/j.applthermaleng.2018.11.006
|
[17] |
MAO Liangjie, WEI Changjiang, JIA Hai, et al. Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters[J]. Energy, 2023, 284: 129341. doi: 10.1016/j.energy.2023.129341
|
[18] |
张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85.
ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85.
|
[19] |
LI Gao, YANG Mou, MENG Yingfeng, et al. Transient heat transfer models of wellbore and formation systems during the drilling process under well kick conditions in the bottom-hole[J]. Applied Thermal Engineering, 2016, 93: 339–347. doi: 10.1016/j.applthermaleng.2015.09.110
|
[20] |
赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69–75.
ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells[J]. Petroleum Drilling Techniques, 2022, 50(4): 69–75.
|
[21] |
田得强,李中,许亮斌,等. 深水高温高压气井钻井循环温度压力耦合计算与分析[J]. 中国海上油气,2022,34(5):149–157.
TIAN Deqiang, LI Zhong, XU Liangbin, et al. Coupling calculation and analysis of circulating temperature pressure distribution in deepwater HTHP gas well drilling[J]. China Offshore Oil and Gas, 2022, 34(5): 149–157.
|
[22] |
CHEN Xin, HE Miao, XU Mingbiao, et al. Fully transient coupled prediction model of wellbore temperature and pressure for multi-phase flow during underbalanced drilling[J]. Geoenergy Science and Engineering, 2023, 223: 211540. doi: 10.1016/j.geoen.2023.211540
|
[23] |
XU Zhengming, CHEN Xuejiao, SONG Xianzhi, et al. Gas-kick simulation in oil-based drilling fluids with nonequilibrium gas-dissolution and -evolution effects[J]. SPE Journal, 2021, 26(5): 2549–2569. doi: 10.2118/206717-PA
|
[24] |
XU Zhengming, WU Kan, SONG Xianzhi, et al. A unified model to predict flowing pressure and temperature distributions in horizontal wellbores for different energized fracturing fluids[J]. SPE Journal, 2019, 24(2): 834–856.
|
[25] |
王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112.
WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112.
|
[26] |
王金磊,江波,黄范勇. 井筒降温技术研究综述[J]. 新疆石油科技,2015,25(2):9–11.
WANG Jinlei, JIANG Bo, HUANG Fanyong. A review of wellbore cooling technology[J]. Xinjiang Petroleum Science & Technology, 2015, 25(2): 9–11.
|
[27] |
吴鹏程,钟成旭,严俊涛,等. 深层页岩气水平井钻进中井筒–地层瞬态传热模型[J]. 石油钻采工艺,2022,44(1):1–8.
WU Pengcheng, ZHONG Chengxu, YAN Juntao, et al. Well-formation transient heat transfer model during drilling of deep shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2022, 44(1): 1–8.
|
[28] |
梁晓阳,赵聪,赵向阳,等. 基于热管技术的钻井液地面降温系统研制[J]. 石油机械,2023,51(3):24–32.
LIANG Xiaoyang, ZHAO Cong, ZHAO Xiangyang, et al. Development of the drilling fluid surface cooling system based on heat pipes[J]. China Petroleum Machinery, 2023, 51(3): 24–32.
|
[29] |
李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21.
LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21.
|
[30] |
贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.
JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.
|
[31] |
王建龙,于志强,苑卓,等. 四川盆地泸州区块深层页岩气水平井钻井关键技术[J]. 石油钻探技术,2021,49(6):17–22.
WANG Jianlong, YU Zhiqiang, YUAN Zhuo, et al. Key technologies for deep shale gas horizontal well drilling in Luzhou Block of Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(6): 17–22.
|
[32] |
刘昌弟,孙元伟,程怀标. 南海琼东南盆地高温低压大位移井钻井技术[J]. 特种油气藏,2013,20(6):80–83.
LIU Changdi, SUN Yuanwei, CHENG Huaibiao. High temperature, low pressure and extended reach well drilling in the southeast Hainan Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(6): 80–83.
|
[33] |
刘均一,陈二丁,李光泉,等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术,2021,49(1):53–58.
LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53–58.
|
[34] |
肖雨阳. 高含水气井井下节流工艺参数优化[D]. 荆州:长江大学,2023.
XIAO Yuyang. Optimization of downhole throttling process parameters for gas wells with high water content[D]. Jingzhou: Yangtze University, 2023.
|
[35] |
闫新. 高含水气井井下节流特性研究[D]. 西安:西安石油大学,2021.
YAN Xin. Study on downhole throttling characteristics of high water-cut gas wells[D]. Xi’an: Xi’an Shiyou University, 2021.
|
[36] |
余朝毅. 井下节流机理研究及现场应用[D]. 成都:西南石油大学,2004.
YU Zhaoyi. Research on downhole throttling mechanism and field application[D]. Chengdu: Southwest Petroleum University, 2004.
|
[37] |
SOPRANI S, ENGELBRECHT K, NØRGAARD A J. Active cooling and thermal management of a downhole tool electronics section[C]//Proceedings of the 24th IIR International Congress of Refrigeration. Paris: International Institute of Refrigeration, 2015: 85.
|
[38] |
CHIN Y D, KVAERNER A. Cool-down-temperature overshoot phenomenon in subsea flowline and riser systems[R]. OTC 15253, 2003.
|
[39] |
BONNISSEL M, OZOUX V, COUPRIE S, et al. Gel based materials for high insulation and long cool down time in deep water[R]. OTC 16504, 2004.
|
[40] |
JANOFF D, MCKIE N, DAVALATH J. Prediction of cool down times and designing of insulation for subsea production equip-ment[R]. OTC 16507, 2004.
|
[41] |
DAVALATH J, STEVENS K. Cool-down thermal performance of subsea systems based on Gulf of Mexico field experience[R]. OTC 17972, 2006.
|
[42] |
刘珂,高文凯,洪迪峰,等. 随钻仪器井下降温系统阻热性能研究[J]. 石油机械,2020,48(8):23–30.
LIU Ke, GAO Wenkai, HONG Difeng, et al. Study on thermal resistance performance of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2020, 48(8): 23–30.
|
[43] |
刘珂,苏义脑,高文凯,等. 随钻仪器井下降温系统冷却效果数值研究[J]. 石油机械,2022,50(7):18–25.
LIU Ke, SU Yinao, GAO Wenkai, et al. Numerical study on cooling effect of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2022, 50(7): 18–25.
|
[44] |
刘珂,高文凯,窦修荣,等. 随钻仪器井下降温系统传热特性研究[J]. 石油机械,2022,50(2):23–32.
LIU Ke, GAO Wenkai, DOU Xiurong, et al. Heat transfer characteristic study on downhole cooling system of drilling instrument[J]. China Petroleum Machinery, 2022, 50(2): 23–32.
|
[45] |
杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.
YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
|
1. |
杨玉贵,邢希金,孙文化. 强分散性地层大位移井钻井液关键技术研究. 石油化工应用. 2022(05): 15-20 .
![]() | |
2. |
孟也,李相方,何敏侠,蒋明洁. 气泡卡断过程中的喉道液领形态与聚并模型. 断块油气田. 2019(05): 632-637 .
![]() |