Citation: | SUN Weifeng, FENG Jianhan, ZHANG Dezhi, et al. An intelligent lost circulation recognition method using LSTM-autoencoder and ensemble learning [J]. Petroleum Drilling Techniques, 2024, 52(3):61-67. DOI: 10.11911/syztjs.2024006 |
To enhance the low recognition accuracy of traditional intelligent lost circulation models, which suffer from limited samples, this study combined the long short-term memory (LSTM) network and auto-encoder (AE) to create an integrated LSTM-AE-based intelligent lost circulation recognition model. Initially, multiple LSTM-AE models with varying numbers of hidden neurons were trained using normal samples. Several models with better recognition performance were selected as base recognizers based on their reconstruction scores. Subsequently, the recognition results from these base recognizers were fused using ensemble learning. This approach addresses the tendency of a single model to produce false alarms and missed alarms due to overlearning of local sample characteristics, thereby improving the recognition accuracy of the model. The integrated LSTM-AE model was trained and tested using 6000 sets of stand pipe pressure, outlet flow, and mud pit volume data from 18 wells under normal drilling conditions in an oilfield. The results show that the proposed method achieves a recognition accuracy of 94.7%, surpassing the recognition results of other commonly used intelligent models. This approach offers a novel method for lost circulation recognition.
[1] |
陈钢花,何宇龙,邱正松,等. 钻井过程中井漏特征精细识别方法研究与应用[J]. 石油钻探技术,2024,52(1):26–31.
CHEN Ganghua, HE Yulong, QIU Zhengsong, et al. Research and application for the fine identification method of lost circulation characteristics during drilling[J]. Petroleum Drilling Techniques, 2024, 52(1): 26–31.
|
[2] |
李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8.
LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8.
|
[3] |
徐哲,李建,王兵,等. 基于贝叶斯网络的钻井井漏问题研究[J]. 石油天然气学报,2013,35(12):125–129.
XU Zhe, LI Jian, WANG Bing, et al. Research on well leakage in drilling based on Bayesian network[J]. Journal of Oil and Gas Technology, 2013, 35(12): 125–129.
|
[4] |
刘彪,李窚晓,李双贵,等. 基于支持向量回归的井漏预测[J]. 钻采工艺,2019,42(6):17–20. doi: 10.3969/J.ISSN.1006-768X.2019.06.05
LIU Biao, LI Chengxiao, LI Shuanggui, et al. Lost circulation prediction based on support vector regression[J]. Drilling & Production Technology, 2019, 42(6): 17–20. doi: 10.3969/J.ISSN.1006-768X.2019.06.05
|
[5] |
史肖燕,周英操,赵莉萍,等. 基于随机森林的溢漏实时判断方法研究[J]. 钻采工艺,2020,43(1):9–12.
SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al. Study on how to determine kicks and losses in real time on basis of random forest method[J]. Drilling & Production Technology, 2020, 43(1): 9–12.
|
[6] |
杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13.
YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.
|
[7] |
葛亮,滕怡,肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报(自然科学版),2023,45(2):126–134.
GE Liang, TENG Yi, XIAO Guoqing, et al. Research on overflow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(2): 126–134.
|
[8] |
孙伟峰,卜赛赛,张德志,等. 基于DCC-LSTM的钻井液微量漏失智能监测方法[J]. 天然气工业,2023,43(9):141–148.
SUN Weifeng, BU Saisai, ZHANG Dezhi, et al. DCC-LSTM based intelligent minor lost circulation monitoring method[J]. Natural Gas Industry, 2023, 43(9): 141–148.
|
[9] |
张矿生,宫臣兴,陆红军,等. 基于集成学习的井漏智能预警模型及智能推理方法[J]. 石油钻采工艺,2023,45(1):47–54.
ZHANG Kuangsheng, GONG Chenxing, LU Hongjun, et al. Intelligent early warning model and intelligent reasoning method based on integrated learning for loss circulation[J]. Oil Drilling & Production Technology, 2023, 45(1): 47–54.
|
[10] |
王钰豪,郝家胜,张帆,等. 钻井溢流风险的自适应LSTM预警方法[J]. 控制理论与应用,2022,39(3):441–448.
WANG Yuhao, HAO Jiasheng, ZHANG Fan, et al. Adaptive LSTM early warning method for kick detection in drilling[J]. Control Theory & Applications, 2022, 39(3): 441–448.
|
[11] |
谭天一,张辉,马丹妮,等. 考虑数据不平衡影响的钻井复杂智能诊断方法[J]. 石油钻采工艺,2021,43(4):449–454.
TAN Tianyi, ZHANG Hui, MA Danni, et al. An intelligent drilling accident diagnosis method considering the influence of data imbalance[J]. Oil Drilling & Production Technology, 2021, 43(4): 449–454.
|
[12] |
杨岳毅,王立德,陈煌,等. 基于变分自编码器的MVB网络异常检测方法[J]. 铁道学报,2022,44(1):71–78.
YANG Yueyi, WANG Lide, CHEN Huang, et al. Anomaly detection method for MVB network based on variational autoencoder[J]. Journal of the China Railway Society, 2022, 44(1): 71–78.
|
[13] |
王晓玉,刘桂芳,韩宝坤,等. 堆叠自编码器在样本不充足下的轴承故障诊断方法[J]. 噪声与振动控制,2021,41(2):100–104.
WANG Xiaoyu, LIU Guifang, HAN Baokun, et al. Stacked autoencoders for bearing fault diagnosis under the condition of insufficient samples[J]. Noise and Vibration Control, 2021, 41(2): 100–104.
|
[14] |
秦婉亭,老松杨,汤俊,等. 基于变分自编码器的飓风轨迹异常检测方法[J]. 系统仿真学报,2021,33(9):2191–2201.
QIN Wanting, LAO Songyang, TANG Jun, et al. Hurricane trajectory outlier detection method based on variational auto-encode[J]. Journal of System Simulation, 2021, 33(9): 2191–2201.
|
[15] |
田晟,宋霖. 基于CNN和Bagging集成的交通标志识别[J]. 广西师范大学学报(自然科学版),2022,40(4):35–46.
TIAN Sheng, SONG Lin. Traffic sign recognition based on CNN and Bagging integration[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35–46.
|
[16] |
陈江,单桂军,李正明. 基于支持向量机集成学习的网络故障诊断方法[J]. 计算机测量与控制,2014,22(12):3906–3908.
CHEN Jiang, SHAN Guijun, LI Zhengming. Network fault diagnosis based on support vector machine ensemble learning[J]. Computer Measurement & Control, 2014, 22(12): 3906–3908.
|
[17] |
徐晓芳,管瑞. 基于神经网络集成学习算法的金融时间序列预测[J]. 计算机系统应用,2022,31(6):29–37.
XU Xiaofang, GUAN Rui. Financial time series forecasting based on neural network ensemble learning algorithms[J]. Computer Systems & Applications, 2022, 31(6): 29–37.
|
[18] |
YU Yong, SI Xiaosheng, HU Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235–1270. doi: 10.1162/neco_a_01199
|
[19] |
王海彪. 井漏智能识别及处理决策研究[D]. 成都:西南石油大学,2017.
WANG Haibiao. Study of intelligent recognition and management decisions of lost circulation[D]. Chengdu: Southwest Petroleum University, 2017.
|
[20] |
蔺研锋,闵超,代博仁,等. 基于动态特征和深度神经网络的钻井漏失事故预测[J]. 西安石油大学学报(自然科学版),2022,37(3):64–69.
LIN Yanfeng, MIN Chao, DAI Boren, et al. Prediction of drilling leakage accident based on dynamic features and deep neural network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(3): 64–69.
|
[21] |
孙伟峰,刘凯,张德志,等. 结合钻井工况与Bi-GRU的溢流与井漏监测方法[J]. 石油钻探技术,2023,51(3):37–44.
SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37–44.
|
1. |
徐子鸿,王仪. 基于CNN-LSTM-Attention的气井井筒积液诊断. 成都工业学院学报. 2025(01): 14-20 .
![]() | |
2. |
张剑,肖禹涵,周忠易,杨俊龙. 基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法. 石油钻探技术. 2024(05): 82-90 .
![]() | |
3. |
陈现军,郭书生,廖高龙,董振国,付群超. 基于人工智能的录井岩屑荧光智能检测系统研制. 石油钻探技术. 2024(05): 130-137 .
![]() |