ZHANG Weiguo, JIANG Kun, SONG Yu, et al. Drilling speed enhancement method for extended reach wells based on machine learning and Bayesian optimization [J]. Petroleum Drilling Techniques, 2025, 53(2):38−45. DOI: 10.11911/syztjs.2025027
Citation: ZHANG Weiguo, JIANG Kun, SONG Yu, et al. Drilling speed enhancement method for extended reach wells based on machine learning and Bayesian optimization [J]. Petroleum Drilling Techniques, 2025, 53(2):38−45. DOI: 10.11911/syztjs.2025027

Drilling Speed Enhancement Method for Extended Reach Wells Based on Machine Learning and Bayesian Optimization

More Information
  • Received Date: January 09, 2025
  • Revised Date: March 25, 2025
  • Available Online: March 31, 2025
  • The complex wellbore trajectories and significant horizontal displacements of offshore extended reach wells lead to increased downhole friction, severely affecting drilling efficiency. By leveraging drilling and logging data, this study proposes a novel method for rate of penetration (ROP) enhancement in extended reach wells with ROP prediction and drilling parameter optimization based on machine learning. Firstly, the original field data were pre-processed by filtering and normalization, followed by correlation analysis, revealing that ROP has strong correlation with drilling parameters such as weight on bit (WOB) and rotary speed, as well as wellbore trajectory parameters such as inclination angle and horizontal displacement. Based on these findings, ROP prediction models were developed using BP neural networks, random forests, and support vector machines. The results show that the BP neural network model outperforms the others, providing relatively accurate ROP predictions for offshore extended reach wells. Finally, the Bayesian optimization algorithm was employed to optimize parameters such as WOB, rotary speed, and displacement for ROP enhancement. The optimization results show that the ROP increases by 18.86% on average after the optimization of drilling parameters. The research results reveal the influence of drilling parameters and wellbore trajectory parameters on the ROP of extended reach wells and provide a theoretical basis for increasing the ROP of extended reach wells.

  • [1]
    高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8.

    GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8.
    [2]
    张剑,肖禹涵,周忠易,等. 基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法[J]. 石油钻探技术,2024,52(5):82–90.

    ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, et al. Downhole WOB prediction method based on CNN-Bi-LSTM network optimized by TDCSO[J]. Petroleum Drilling Techniques, 2024, 52(5): 82–90.
    [3]
    李乾,王磊,王喜杰,等. 东海大位移水平井降摩减阻技术研究与实践[J]. 中国海上油气,2022,34(6):149–156.

    LI Qian, WANG Lei, WANG Xijie, et al. Research and practice of friction and drag reduction technology for extended reach horizontal wells in the East China Sea[J]. China Offshore Oil and Gas, 2022, 34(6): 149–156.
    [4]
    纪国栋,陈畅畅,郭建华,等. 万米深井钻柱减振增能提速方法研究[J]. 石油钻探技术,2024,52(2):100–107. doi: 10.11911/syztjs.2024038

    JI Guodong, CHEN Changchang, GUO Jianhua, et al. Research on vibration reduction, energy enhancement, and acceleration methods for drilling strings of 10 000-meter deep wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 100–107. doi: 10.11911/syztjs.2024038
    [5]
    呼怀刚,黄洪春,汪海阁,等. 国内外PDC钻头新进展与发展趋势展望[J]. 石油机械,2024,52(2):1–10.

    HU Huaigang, HUANG Hongchun, WANG Haige, et al. New progress and development trends of PDC bits in China and Abroad[J]. China Petroleum Machinery, 2024, 52(2): 1–10.
    [6]
    佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业,2024,44(1):40–48. doi: 10.3787/j.issn.1000-0976.2024.01.004

    SHE Zhaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan Basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40–48. doi: 10.3787/j.issn.1000-0976.2024.01.004
    [7]
    李中. 渤海深层探井钻井关键技术现状及展望[J]. 钻采工艺,2024,47(2):35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05

    LI Zhong. Challenges and technology trends prediction of deep exploration well drilling in Bohai Sea[J]. Drilling & Production Technology, 2024, 47(2): 35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05
    [8]
    HEGDE C, GRAY K. Evaluation of coupled machine learning models for drilling optimization[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 397–407. doi: 10.1016/j.jngse.2018.06.006
    [9]
    郑双进,江厚顺,熊梦园,等. 基于数据驱动和机理模型的机械钻速预测[J]. 钻采工艺,2025,48(1):78–87. doi: 10.3969/J.ISSN.1006-768X.2025.01.10

    ZHENG Shuangjin, JIANG Houshun, XIONG Mengyuan, et al. Data driven and mechanistic model based prediction of rate of penetration[J]. Drilling & Production Technology, 2025, 48(1): 78–87. doi: 10.3969/J.ISSN.1006-768X.2025.01.10
    [10]
    伊鹏,刘衍聪,郭欣,等. 基于改进自适应遗传算法的钻井参数优化设计[J]. 石油机械,2010,38(2):30–33.

    YI Peng, LIU Yancong, GUO Xin, et al. Optimized design of drilling darameters based on enhanced adaptive genetic algorithm[J]. China Petroleum Machinery, 2010, 38(2): 30–33.
    [11]
    刘光星,李巧花. 基于改进蚁群算法的钻进参数优化[J]. 西安石油大学学报(自然科学版),2019,34(4):31–36. doi: 10.3969/j.issn.1673-064X.2019.04.006

    LIU Guangxing, LI Qiaohua. Optimization of drilling parameters based on improved ant colony algorithm[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(4): 31–36. doi: 10.3969/j.issn.1673-064X.2019.04.006
    [12]
    刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速[J]. 西南石油大学学报(自然科学版),2020,42(6):35–41.

    LIU Zhaonian, ZHAO Ying, SUN Ting. Data-driven drilling acceleration in Bohai XX Block[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 35–41.
    [13]
    GAN Chao, CAO Weihua, WU Min, et al. Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia Area, Central China[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106200.
    [14]
    SOARES C, GRAY K. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models[J]. Journal of Petroleum Science and Engineering, 2019, 172: 934–959. doi: 10.1016/j.petrol.2018.08.083
    [15]
    NAJJARPOUR M, JALALIFAR H, NOROUZI-APOURVARI S. Half a century experience in rate of penetration management: application of machine learning methods and optimization algorithms: a review[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part D): 109575.
    [16]
    FENG Hao, ZHOU Yadong, ZENG Weili, et al. A physics-based PSO-BPNN model for civil aircraft noise assessment[J]. Applied Acoustics, 2024, 221: 109992. doi: 10.1016/j.apacoust.2024.109992
    [17]
    苏兴华,孙俊明,高翔,等. 基于GBDT算法的钻井机械钻速预测方法研究[J]. 计算机应用与软件,2019,36(12):87–92. doi: 10.3969/j.issn.1000-386x.2019.12.014

    SU Xinghua, SUN Junming, GAO Xiang, et al. Prediction method of drilling rate of penetration based on GBDT algorithm[J]. Computer Applications and Software, 2019, 36(12): 87–92. doi: 10.3969/j.issn.1000-386x.2019.12.014
    [18]
    张宏韬,唐芳,吴坤,等. 基于粒子群优化BP神经网络的激光扫描投影系统畸变预测方法[J]. 光子学报,2024,53(6):0611001. doi: 10.3788/gzxb20245306.0611001

    ZHANG Hongtao, TANG Fang, WU Kun, et al. Distortion prediction method of laser scanning projection system based on PSO-BP neural network[J]. Acta Photonica Sinica, 2024, 53(6): 0611001. doi: 10.3788/gzxb20245306.0611001
    [19]
    陈亮,郝祎纯,李巧茹,等. 改进SSA优化的BP神经网络交通量预测模型[J]. 哈尔滨工业大学学报,2024,56(7):94–101.

    CHEN Liang, HAO Yichun, LI Qiaoru, et al. Traffic volume forecast model based on BP neural network optimized by improved sparrow search algorithm[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 94–101.
    [20]
    邹红梅,朱成涛. 基于LSTM和BP神经网络的水库入库径流中长期预测比较研究[J]. 水文,2024,44(4):27–31.

    ZOU Hongmei, ZHU Chengtao. Comparative study on mid-long term prediction of reservoir inflow based on LSTM and BP neural network[J]. Journal of China Hydrology, 2024, 44(4): 27–31.
    [21]
    秦长坤,赵武胜,贾海宾,等. 基于模态分解和深度学习的煤矿微震时序预测方法[J]. 煤炭学报,2024,49(9):3781–3797.

    QIN Changkun, ZHAO Wusheng, JIA Haibin, et al. A method for predicting the time series of microseismic events in coal mines based on modal decomposition and deep learning[J]. Journal of China Coal Society, 2024, 49(9): 3781–3797.
    [22]
    盖建. 基于自动机器学习的采油井压裂效果预测方法[J]. 油气地质与采收率,2023,30(1):161–170.

    GE Jian. Prediction method for hydraulic fracturing effect of oil production well based on automatic machine learning technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 161–170.
    [23]
    郝杨杨,邹宇. 基于BP神经网络的上海生鲜农产品物流需求预测[J]. 上海海事大学学报,2024,45(1):39–45.

    HAO Yangyang, ZOU Yu. Logistics demand forecast of fresh agricultural products in Shanghai based on BP neural network[J]. Journal of Shanghai Maritime University, 2024, 45(1): 39–45.
    [24]
    雍锐. 智能钻井多目标协同优化系统研究与应用[J]. 钻采工艺,2024,47(3):9–14.

    YONG Rui. Research and application of intelligent drilling advisory system[J]. Drilling & Production Technology, 2024, 47(3): 9–14.
    [25]
    葛亮,滕怡,肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报(自然科学版),2023,45(2):126–134.

    GE Liang, TENG Yi, XIAO Guoqing, et al. Research on overflow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(2): 126–134.
    [26]
    高云伟,罗利民,薛凤龙,等. 基于Stacking集成学习的机械钻速预测方法[J]. 石油机械,2024,52(5):17–24.

    GAO Yunwei, LUO Limin, XUE Fenglong, et al. ROP prediction method based on stacking ensemble learning[J]. China Petroleum Machinery, 2024, 52(5): 17–24.
    [27]
    姜宝胜,白玉湖,徐兵祥,等. 基于集成学习的致密气藏产能预测新方法[J]. 中国海上油气,2024,36(5):120–127.

    JIANG Baosheng, BAI Yuhu, XU Bingxiang, et al. A novel approach for predicting production capacity of tight gas reservoirs based on ensemble learning[J]. China Offshore Oil and Gas, 2024, 36(5): 120–127.
    [28]
    CHEN Xuyue, WENG Chengkai, DU Xu, et al. Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques[J]. Ocean Engineering, 2023, 285(part 2): 115404.
    [29]
    汤明,王汉昌,何世明,等. 基于PCA-BP算法的机械钻速预测研究[J]. 石油机械,2023,51(10):23–31.

    TANG Ming, WANG Hanchang, HE Shiming, et al. Prediction for rate of penetration based on PCA-BP algorithm[J]. China Petroleum Machinery, 2023, 51(10): 23–31.
    [30]
    黄哲. 探管式智能钻头参数测量装置研制与现场试验[J]. 石油钻探技术,2024,52(4):34–43. doi: 10.11911/syztjs.2024004

    HUANG Zhe. Development and field test of probe-type intelligent bit parameter measurement device[J]. Petroleum Drilling Techniques, 2024, 52(4): 34–43. doi: 10.11911/syztjs.2024004
  • Cited by

    Periodical cited type(18)

    1. 郭天魁,郝彤,张跃龙,陈铭,曲占庆,王文宇,吕明锟,杨仁杰,戴海静. 井筒-射孔-裂缝全耦合双暂堵压裂实验装置研发与应用. 实验技术与管理. 2025(01): 161-168 .
    2. 华剑,余泽坤,李晓鹏,谭欢. 高温高黏度暂堵剂液滴形态与成型效率. 科学技术与工程. 2025(05): 1904-1912 .
    3. 刘彝,余成林,李云子,姜喜梅,于洋洋,吴均,刘京. 压裂用有机硅暂堵转向剂的制备及性能评价. 钻井液与完井液. 2025(02): 275-282 .
    4. 戴彩丽,王子昭,李琳,蒋田宇,刘津铭,董云博,赵明伟,吴一宁. 深层油气层水力压裂化学暂堵剂研究进展及展望. 天然气工业. 2025(04): 19-32 .
    5. 俞天喜,孙锡泽,陈强,陈江萍,徐克山,张敬春,周航,王博. 不同岩性储层裂缝封堵规律实验. 断块油气田. 2024(02): 345-350 .
    6. 代银红. 元坝西部地区深层致密砂岩水平井高效压裂技术. 中国石油和化工标准与质量. 2024(11): 131-134+137 .
    7. 王科,卢双舫,娄毅,李楠,李海涛,叶铠睿,张砚,李松雷. 压裂液渗吸与富气页岩气井典型生产规律关系剖析. 特种油气藏. 2024(03): 158-166 .
    8. 何乐,朱炬辉,梁兴,赵智勇,管彬,安树杰. 基于管外光纤监测的页岩气水平井多簇压裂效果评价. 石油钻探技术. 2024(04): 110-117 . 本站查看
    9. 李德旗,陈钊,邹清腾,龚舒婷,刘臣,王天一,赖建林,葛婧楠,江铭,潘丹丹,刘兆然,曹博文. 四川盆地渝西大安区块龙潭组深层煤岩气压裂技术探索. 天然气工业. 2024(10): 150-158 .
    10. 任勇,向凌云,赵智勇,齐天俊,钱斌,王德贵,张宏桥. 140 MPa电驱自动计数远程投球器的研制. 机械工程师. 2024(12): 113-115 .
    11. 陈挺,徐昊垠,张源,张磊,于相东,李国良. 深层页岩储层转向压裂用暂堵材料研究及应用. 石油化工应用. 2024(11): 18-23 .
    12. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 .
    13. 徐颖洁,陈玉林,何封,秦佳正,汤勇,段胜才,何佑伟. 基于嵌入式离散裂缝模型的页岩气开发参数优化. 天然气工业. 2024(12): 105-115 .
    14. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .
    15. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    16. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    17. 舒红林,刘臣,李志强,段贵府,赖建林,江铭. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究. 石油钻探技术. 2023(06): 77-84 . 本站查看
    18. 刘继龙,谢然红,卫弘媛,徐陈昱,金国文,郑迪,王绍祥. 基于核磁共振T_2分布的页岩油流体组分含量计算方法. 测井技术. 2023(05): 533-541 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (118) PDF downloads (48) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return