FU Qunchao, WAN Xiaojian, CHEN Pei, et al. A pre-drilling prediction method of formation tri-pressures based on machine learning [J]. Petroleum Drilling Techniques, 2025, 53(3):98−105. DOI: 10.11911/syztjs.2025062
Citation: FU Qunchao, WAN Xiaojian, CHEN Pei, et al. A pre-drilling prediction method of formation tri-pressures based on machine learning [J]. Petroleum Drilling Techniques, 2025, 53(3):98−105. DOI: 10.11911/syztjs.2025062

A Pre-Drilling Prediction Method of Formation Tri-Pressures Based on Machine Learning

More Information
  • Received Date: February 09, 2024
  • Revised Date: May 10, 2025
  • Accepted Date: June 01, 2025
  • Available Online: June 05, 2025
  • In response to the issues of low prediction reliability and insufficient computational efficiency associated with conventional models in calculating formation tri-pressures for offshore deep and ultra-deep oil and gas exploration, a machine learning-based method was used. In the method, a deep neural network (DNN) model was used as the main structure, and rock mechanics physical models were integrated as physical constraints. By jointly optimizing data-fitting errors and physical residual terms in the loss function, the mathematical embedding of the physical constraints was achieved. Additionally, it l incorporated multi-source data, including geological, logging, mud logging , and field operational data, to establish a physics − data-driven formation tri-pressure prediction model. Model performance was evaluated using root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The model was applied in the Wushi Block of the South Weixi Depression in the Beibuwan Basin. The results demonstrate minimal discrepancies between predicted and actual formation tri-pressure values, indicating high prediction accuracy, with results consistent with actual application. This machine learning-based pre-drilling prediction method of formation tri-pressures can provide technical support for safe and efficient drilling in deep and ultra-deep formations.

  • [1]
    李战奎,吴立伟,郭明宇,等. 渤中凹陷深层高压井地质工程一体化技术研究与应用[J]. 石油钻探技术,2024,52(2):194–201. doi: 10.11911/syztjs.2024031

    LI Zhankui, WU Liwei, GUO Mingyu, et al. Research and application of integrated geological engineering technology for deep high-pressure wells in the Bozhong Sag[J]. Petroleum Drilling Techniques, 2024, 52(2): 194–201. doi: 10.11911/syztjs.2024031
    [2]
    李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61–67. doi: 10.11911/syztjs.2022041

    LI Fan, LI Daqi, JIN Junbin, et al. Drilling fluid technology for wellbore stability of the diabase formation in Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 61–67. doi: 10.11911/syztjs.2022041
    [3]
    张明明,李大奇,范翔宇. 破碎地层井壁坍塌压力及井周失稳区域研究[J]. 断块油气田,2024,31(5):916–921.

    ZHANG Mingming, LI Daqi, FAN Xiangyu. Study on wellbore collapse pressure and instability area around wellbore in broken formation[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 916–921.
    [4]
    KING HUBBERT M, WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210(1): 153–166. doi: 10.2118/686-G
    [5]
    金衍,陈勉,柳贡慧,等. 大位移井的井壁稳定力学分析[J]. 地质力学学报,1999,5(1):4–11. doi: 10.3969/j.issn.1006-6616.1999.01.002

    JIN Yan, CHEN Mian, LIU Gonghui, et al. Wellbore stability analysis of extended reach wells[J]. Journal of Geomechanics, 1999, 5(1): 4–11. doi: 10.3969/j.issn.1006-6616.1999.01.002
    [6]
    卢运虎,陈勉,袁建波,等. 各向异性地层中斜井井壁失稳机理[J]. 石油学报,2013,34(3):563–568. doi: 10.7623/syxb201303022

    LU Yunhu, CHEN Mian, YUAN Jianbo, et al. Borehole instability mechanism of a deviated well in anisotropic formations[J]. Acta Petrolei Sinica, 2013, 34(3): 563–568. doi: 10.7623/syxb201303022
    [7]
    徐声驰,刘锐,孟鑫,等. 基于井眼坍塌角度和坍塌深度预测模型的泥岩水平段井壁稳定性评价方法[J]. 石油钻采工艺,2023,45(2):136–142.

    XU Shengchi, LIU Rui, MENG Xin, et al. Wellbore stability evaluation of horizontal wellbore in mudstone: a method based on wellbore collapse angle and depth model[J]. Oil Drilling & Production Technology, 2023, 45(2): 136–142.
    [8]
    耿殿栋. 泥页岩储层岩石力学特性及多状态下井壁稳定性研究[D]. 荆州:长江大学,2024.

    GENG Diandong. Study on the rock mechanics characteristics of mudstone-shale reservoirs and wellbore stability under multiple conditions[D]. Jingzhou: Yangtze University, 2024.
    [9]
    曹文科,邓金根,蔚宝华,等. 基于多孔介质热弹性理论的井壁诱导缝成因[J]. 天然气工业,2017,37(6):79–85. doi: 10.3787/j.issn.1000-0976.2017.06.011

    CAO Wenke, DENG Jingen, YU Baohua, et al. Genesis of induced fractures on borehole walls based on the thermo-poroelasticity theory[J]. Natural Gas Industry, 2017, 37(6): 79–85. doi: 10.3787/j.issn.1000-0976.2017.06.011
    [10]
    韦世明,夏阳,陈勉,等. 超深层碳酸盐岩储层孔隙弹性动力学起裂规律[J]. 石油钻采工艺,2020,42(2):127–132.

    WEI Shiming, XIA Yang, CHEN Mian, et al. The fracture initiation laws of ultradeep carbonate reservoirs based on poroelastic dynamics[J]. Oil Drilling & Production Technology, 2020, 42(2): 127–132.
    [11]
    刘海龙,许杰,谢涛,等. 渤海中深层井壁稳定流固耦合研究[J]. 石油机械,2019,47(4):1–7.

    LIU Hailong, XU Jie, XIE Tao, et al. Study on fluid-solid coupling for borehole wall stability of medium-deep wellbore in Bohai Sea[J]. China Petroleum Machinery, 2019, 47(4): 1–7.
    [12]
    李高仁,史亚红,夏宏泉,等. 基于Mogi-Coulomb强度准则的井壁稳定性力学分析新方法[J]. 中国安全生产科学技术,2018,14(10):70–75.

    LI Gaoren, SHI Yahong, XIA Hongquan, et al. New method for mechanical analysis of wellbore stability based on Mogi-Coulomb strength criterion[J]. Journal of Safety Science and Technology, 2018, 14(10): 70–75.
    [13]
    陈颖杰,邓传光,马天寿. 井壁失稳风险的可靠度理论评价方法[J]. 天然气工业,2019,39(11):97–104. doi: 10.3787/j.issn.1000-0976.2019.11.013

    CHEN Yingjie, DENG Chuanguang, MA Tianshou. A risk assessment method of wellbore instability based on the reliability theory[J]. Natural Gas Industry, 2019, 39(11): 97–104. doi: 10.3787/j.issn.1000-0976.2019.11.013
    [14]
    韩正波,刘厚彬,张靖涛,等. 深层脆性页岩力学性能及井壁稳定性研究[J]. 特种油气藏,2020,27(5):167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026

    HAN Zhengbo, LIU Houbin, ZHANG Jingtao, et al. Research on the mechanical properties and borehole stability of deep brittle shale[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 167–174. doi: 10.3969/j.issn.1006-6535.2020.05.026
    [15]
    马天寿,张东洋,杨赟,等. 基于机器学习模型的斜井坍塌压力预测方法[J]. 天然气工业,2023,43(9):119–131. doi: 10.3787/j.issn.1000-0976.2023.09.012

    MA Tianshou, ZHANG Dongyang, YANG Yun, et al. Machine learning model based collapse pressure prediction method for inclined wells[J]. Natural Gas Industry, 2023, 43(9): 119–131. doi: 10.3787/j.issn.1000-0976.2023.09.012
    [16]
    彭超,吴立伟,李战奎,等. 多元录井参数随钻定量监测方法提高生烃超压地层压力监测效率[J]. 石油钻采工艺,2024,46(5):549–561.

    PENG Chao, WU Liwei, LI Zhankui, et al. Multi dimensional logging parameter quantitative monitoring method while drilling improves the efficiency of pressure monitoring in hydrocarbon generating over-pressure formations[J]. Oil Drilling & Production Technology, 2024, 46(5): 549–561.
    [17]
    马天寿,向国富,石榆帆,等. 基于双向长短期记忆神经网络的水平地应力预测方法[J]. 石油科学通报,2022,7(4):487–504.

    MA Tianshou, XIANG Guofu, SHI Yufan, et al. Horizontal in-situ stress prediction method based on the bidirectional long short-term memory neural network[J]. Petroleum Science Bulletin, 2022, 7(4): 487–504.
    [18]
    赵军,李勇,文晓峰,等. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏,2024,36(6):12–22. doi: 10.12108/yxyqc.20240602

    ZHAO Jun, LI Yong, WEN Xiaofeng, et al. Prediction of shale formation pore pressure based on Zebra Optimization Algorithm-optimized support vector regression[J]. Lithologic Reservoirs, 2024, 36(6): 12–22. doi: 10.12108/yxyqc.20240602
    [19]
    曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023,51(6):1–11. doi: 10.11911/syztjs.2023069

    ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1–11. doi: 10.11911/syztjs.2023069
    [20]
    AHMED S A, MAHMOUD A A, ELKATATNY S, et al. Prediction of pore and fracture pressures using support vector machine[R]. IPTC 19523, 2019.
    [21]
    贾利春,李柱正,陈丽萍. 基于有效应力的裂缝性碳酸盐岩地层孔隙压力预测[J]. 钻采工艺,2023,46(5):93–99. doi: 10.3969/J.ISSN.1006-768X.2023.05.15

    JIA Lichun, LI Zhuzheng, CHEN Liping. Pore pressure prediction of fractured carbonate formation in central Sichuan based on effective stress principle[J]. Drilling & Production Technology, 2023, 46(5): 93–99. doi: 10.3969/J.ISSN.1006-768X.2023.05.15
    [22]
    EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929–934. doi: 10.2118/3719-PA
    [23]
    邓金根,陈峥嵘,耿亚楠,等. 页岩储层地应力预测模型的建立和求解[J]. 中国石油大学学报(自然科学版),2013,37(6):59–64.

    DENG Jingen, CHEN Zhengrong, GENG Yanan, et al. Prediction model for in-situ formation stress in shale reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(6): 59–64.
    [24]
    安康. 超深层碳酸盐岩力学实验及井壁坍塌压力研究[D]. 北京:中国地质大学(北京),2021.

    AN Kang. Mechanical experiment of ultra-deep carbonate rock and research on collapse pressure of well. [D]. Beijing: China University of Geosciences(Beijing), 2021.
    [25]
    蔡文军,李中,殷志明,等. 基于地质工程一体化的裂缝性地层漏失压力预测[J]. 断块油气田,2024,31(4):676–683.

    CAI Wenjun, LI Zhong, YIN Zhiming, et al. Prediction of leakage pressure in fractured formation based on integration of geology and engineering[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 676–683.
    [26]
    幸雪松,袁俊亮,李忠慧,等. 南海深水高温高压条件下地层破裂压力的确定[J]. 石油钻探技术,2023,51(6):18–24. doi: 10.11911/syztjs.2023052

    XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18–24. doi: 10.11911/syztjs.2023052
  • Cited by

    Periodical cited type(11)

    1. 简旭,李皋,王军,王浩,王松涛,王华平. 气体钻井近钻头超前探测声源评价与优选. 石油钻探技术. 2025(01): 41-48 . 本站查看
    2. 郝小龙,高国寅,谭海峰,杨诚,李岳桓. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法. 石油钻探技术. 2024(06): 148-155 . 本站查看
    3. 喻著成,许期聪,邱儒义,雷鸣,周箩鱼. 随钻声波井下全景成像技术现状及展望. 钻采工艺. 2023(03): 171-175 .
    4. 王伟,郝小龙,周静,杨诚,高国寅. 随钻声波测井井下算法测试系统数据交换接口设计. 西安石油大学学报(自然科学版). 2023(06): 118-123+132 .
    5. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 .
    6. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 .
    7. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
    8. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
    9. 郝小龙,高国寅,王伟,杨诚. 声波测井井下处理算法开发的上位机软件设计. 石油化工应用. 2022(09): 101-104 .
    10. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看
    11. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (24) PDF downloads (11) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return