WANG Zhizhan, HAN Yujiao, JIN Yunyun, et al. Nuclear magnetic resonance evaluation method of shale oil with medium and low maturity in Biyang Sag [J]. Petroleum Drilling Techniques,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094
Citation: WANG Zhizhan, HAN Yujiao, JIN Yunyun, et al. Nuclear magnetic resonance evaluation method of shale oil with medium and low maturity in Biyang Sag [J]. Petroleum Drilling Techniques,2023, 51(5):58-65. DOI: 10.11911/syztjs.2023094

Nuclear Magnetic Resonance Evaluation Method of Shale Oil with Medium and Low Maturity in Biyang Sag

More Information
  • Received Date: May 29, 2023
  • Revised Date: August 21, 2023
  • Accepted Date: September 04, 2023
  • Available Online: September 06, 2023
  • The pore structure of shale oil with medium and low maturity is complex, and the detection of pore density is difficult. In addition, kerogen, asphalt, and solid-like components are developed, making it difficult to accurately evaluate sweet spots. In order to accurately evaluate the reservoir and oil-bearing characteristics of shale reservoirs with medium and low maturity, low-field nuclear magnetic resonance (NMR) technology was taken as the main research method. The factors affecting the acquisition accuracy of NMR signals, such as magnetic field intensity, probe aperture, echo interval, and peak shift, were compared and analyzed, and the high-precision acquisition parameters of shale oil with medium and low maturity suitable for the development of short relaxation components were determined. The reservoir and oil-bearing characteristics of Well YY1 in Biyang Sag were evaluated by using high-resolution 1D and 2D NMR measurements, combined with the experimental results of nitrogen adsorption, mercury injection, and geochemical analysis, and a characterization model of kerogen content based on 2D NMR components was established. The results show that the NMR measurement of shale oil with medium and low maturity puts forward higher requirements for the echo interval of instruments. Under the condition that TE cannot be shortened by instrument hardware, more information of short relaxation components can be collected by means of peak shift to obtain more representative spectra. NMR technology can realize the high-precision evaluation of various characteristics of shale oil reservoirs and source rocks with medium and low maturity. It is of great role to carry out in-depth information mining and research for the efficient exploration and development of shale oil with medium and low maturity.

  • [1]
    杨雷,金之钧. 全球页岩油发展及展望[J]. 中国石油勘探,2019,24(5):553–559.

    YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553–559.
    [2]
    盛湘,张烨. 国外页岩油开发技术进展及其启示[J]. 石油地质与工程,2015,29(6):80–83.

    SHENG Xiang, ZHANG Ye. Development technology advances and the enlightenment of foreign shale oil[J]. Petroleum Geology and Engineering, 2015, 29(6): 80–83.
    [3]
    张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.
    [4]
    金之钧,王冠平,刘光祥,等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报,2021,42(7):821–835.

    JIN Zhijun, WANG Guanping, LIU Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821–835.
    [5]
    孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575.

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575.
    [6]
    FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55–62. doi: 10.1016/j.petrol.2015.11.006
    [7]
    ALI M R, ANAND V, ABUBAKAR A, et al. Characterizing light versus bound hydrocarbon in a shale reservoir by integrating new two-dimensional NMR and advanced spectroscopy measure-ments[R]. URTEC-2457043-MS, 2016.
    [8]
    NICOT B, VORAPALAWUT N, ROUSSEAU B, et al. Estimating saturations in organic shales using 2D NMR[J]. Petrophysics, 2016, 57(1): 19–29.
    [9]
    WASHBURN K E, CHENG Yuesheng. Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange[J]. Journal of Magnetic Resonance, 2017, 278: 18–24. doi: 10.1016/j.jmr.2017.02.022
    [10]
    MEHANA M, EL-MONIER I. Shale characteristics impact on nuclear magnetic resonance (NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138–147. doi: 10.1016/j.petlm.2016.02.002
    [11]
    KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167–177. doi: 10.1016/j.fuel.2018.07.100
    [12]
    李骥远,卢双舫. 利用核磁共振T1-T2谱技术研究页岩油可动性[J]. 中国锰业,2017,35(4):169–172.

    LI Jiyuan, LU Shuangfang. Using MRI T1-T2 technology to research the mobility of shale oil[J]. China’s Manganese Industry, 2017, 35(4): 169–172.
    [13]
    LI Jinbu, HUANG Wenbiao, LU Shuangfang, et al. Nuclear magnetic resonance T1T2 map division method for hydrogen-bearing components in continental shale[J]. Energy & Fuels, 2018, 32(9): 9043–9054.
    [14]
    ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210. doi: 10.1016/j.marpetgeo.2019.104210
    [15]
    王志战. 页岩油储层D-T2核磁共振解释方法[J]. 天然气地球科学,2020,31(8):1178–1184.

    WANG Zhizhan. Discuss on D-T2 NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178–1184.
    [16]
    郭江峰,徐陈昱,谢然红,等. 含微裂缝致密砂岩核磁共振响应机理研究[J]. 石油钻探技术,2022,50(4):121–128.

    GUO Jiangfeng, XU Chenyu, XIE Ranhong, et al. Study on the NMR response mechanism of micro-fractured tight sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121–128.
    [17]
    肖立志, 柴细元, 孙宝喜, 等. 核磁共振测井资料解释与应用导论[M]. 北京: 石油工业出版社, 2001.

    XIAO Lizhi, CHAI Xiyuan, SUN Baoxi, et al. NMR logging interpretation and China case studies[M]. Beijing: Petroleum Industry Press, 2001.
    [18]
    KLEINBERG R L, KENYON W E, MITRA P P. Mechanism of NMR relaxation of fluids in rock[J]. Journal of Magnetic Resonance, Series A, 1994, 108(2): 206–214. doi: 10.1006/jmra.1994.1112
    [19]
    HÜRLIMANN M D, VENKATARAMANAN L, FLAUM C. The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media[J]. The Journal of Chemical Physics, 2002, 117(22): 10223–10232. doi: 10.1063/1.1518959
    [20]
    BLOEMBERGEN N, PURCELL E M, POUND R V. Relaxation effects in nuclear magnetic resonance absorption[J]. Physical Review A, 1948, 73(7): 679–712. doi: 10.1103/PhysRev.73.679
    [21]
    BROWNSTEIN K R, TARR C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Physical Review A, 1979, 19(6): 2446–2453. doi: 10.1103/PhysRevA.19.2446
    [22]
    张鹏飞. 基于核磁共振技术的页岩油储集、赋存与可流动性研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHANG Pengfei. Research on shale oil reservoir, occurrence and movability using nuclear magnetic resonance (NMR)[D]. Qingdao: China University of Petroleum(East China), 2019.
    [23]
    LI Jinbu, JIANG Chunqing, WANG Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311. doi: 10.1016/j.marpetgeo.2020.104311
    [24]
    GB/T 41611—2022 页岩气术语和定义[S].

    GB/T 41611—2022 Terms and definitions of shale gas[S].
  • Related Articles

    [1]LI Bangguo, HOU Jiakun, LEI Zhaofeng, ZHANG Bo, WANG Bin, CHEN Jiang. Evaluation of Shale Oil Extraction by Supercritical CO2 and Analysis of Influencing Factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94-103. DOI: 10.11911/syztjs.2024069
    [2]GE Xiang, WEN Danni, YE Tairan, ZHANG Weifeng, ZHANG Shimao. Logging Evaluation Method of Flow Units in a Dolomite Reservoir in the 4th Member of the Leikoupo Formation in Western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120-127. DOI: 10.11911/syztjs.2023049
    [3]CHEN Siping, TAN Pan, SHI Wenrui, ZHAO Hongyan. A Comprehensive Logging Evaluation Method for High Quality Shale Gas Reservoirs in Fuling[J]. Petroleum Drilling Techniques, 2020, 48(4): 131-138. DOI: 10.11911/syztjs.2020091
    [4]WU Xianzhu. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
    [5]LIAO Yong, TAN Pan, SHI Wenrui, FENG Aiguo, HE Haoran. An Evaluation Method for Gas Production Property for Shale Gas Reservoirs in the Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(5): 69-75. DOI: 10.11911/syztjs.2018112
    [6]ZHANG Yiqun, YU Liuying, ZHANG Guofeng. Rapid Evaluation of Shale Reservoirs Based on Pre-Frac Injection/Falloff Diagnostic Test[J]. Petroleum Drilling Techniques, 2017, 45(3): 107-112. DOI: 10.11911/syztjs.201703019
    [7]WANG Hanqing, CHEN Junbin, ZHANG Jie, XIE Qing, WEI Bo, ZHAO Yiran. A New Method of Fracability Evaluation of Shale Gas Reservoir Based on Weight Allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88-94. DOI: 10.11911/syztjs.201603016
    [8]Wan Xuxin. Simulation and Evaluation on Polymer Damage near Wellbore Region in Low-Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(4): 53-58. DOI: 10.11911/syztjs.201504010
    [9]Fang Xiang, Shang Xitao, Wang Xiao. The Logging Evaluation Method of Carbonate Reservoir in the YD Oifield[J]. Petroleum Drilling Techniques, 2015, 43(3): 29-34. DOI: 10.11911/syztjs.201503006
    [10]Li Qinghui, Chen Mian, Jin Yan, Hou Bing, Zhang Jiazhen. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22. DOI: 10.3969/j.issn.1001-0890.2012.04.004
  • Cited by

    Periodical cited type(8)

    1. 陈佳,郭玉祥,董丽娟,樊恒. 远探测随钻方位电磁波测井参数分析与优选. 石油管材与仪器. 2025(02): 67-76 .
    2. 夏国勇,彭仕轩,陆林超,欧成华,权昊森,倪根生,邱前程,马韶光. 水平井钻进中页岩小层结构元素录井智能实时识别. 断块油气田. 2025(03): 508-513 .
    3. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
    4. 秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 . 本站查看
    5. 高泽林,王佳琦,张启子. 智能化测井解释软件平台的架构研究. 石油钻探技术. 2024(04): 128-134 . 本站查看
    6. 吴泽兵,袁若飞,张文溪,刘家乐. 基于多目标遗传算法的PDC复合片交界结构优化设计. 石油钻探技术. 2024(04): 24-33 . 本站查看
    7. 赵宁,申松宁,李宁,胡海涛,齐超,秦策. 基于物理驱动的超深随钻方位电磁波测井深度学习反演. 石油地球物理勘探. 2024(05): 1069-1079 .
    8. 盛茂,范龙昂,张帅,张彦军,李川,田守嶒. 数据–知识混合驱动的压裂球座坐封有效性智能诊断方法. 石油钻探技术. 2024(05): 76-81 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (156) PDF downloads (77) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return