ZOU Longqing, HE Huaiyin, YANG Yadong, et al. Numerical simulation study on the migration characteristics of ball sealers in horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(5):156-166. DOI: 10.11911/syztjs.2023093
Citation: ZOU Longqing, HE Huaiyin, YANG Yadong, et al. Numerical simulation study on the migration characteristics of ball sealers in horizontal shale gas wells [J]. Petroleum Drilling Techniques,2023, 51(5):156-166. DOI: 10.11911/syztjs.2023093

Numerical Simulation Study on the Migration Characteristics of Ball Sealers in Horizontal Shale Gas Wells

More Information
  • Received Date: June 11, 2023
  • Revised Date: August 29, 2023
  • Available Online: September 13, 2023
  • Temporary plugging fracturing of horizontal wells is the key to improving the stimulation results of unconventional reservoirs. The accurate prediction of the migration and plugging characteristics of the ball sealer in horizontal wells plays a prominent role in the successful implementation of the temporary plugging and fracturing of horizontal wells. Therefore, it is necessary to employ numerical simulation methods to simulate the migration and plugging characteristics of ball sealer in horizontal wells. Since the coupled CFD-DEM model can treat the ball sealer as a rotating sphere and accomplish two-way coupling between particle and fluid, a numerical model of wellbore temporary plugging in horizontal shale gas wells was established based on the CFD-DEM coupling method to analyze the influence of ball sealer diameter, fracturing pump rate, and ball sealer density on the migration and sealing behavior of ball sealers. The results showed that for a casing diameter of ϕ139.7 mm, with a single-cluster and a 8-perforation spiral distribution, the effect of wellbore temporary plugging was the best when the ratio of perforation diameter to ball sealer diameter was about 0.97. The sealing efficiency of the ball sealer first increased and then decreased with the increase of pump rate. When the pump rate was less than 6 m3/min, the sealing efficiency of the ball sealer increased with the increase in the pump rate. When the pump rate was 4–7 m3/min, the sealing efficiency of the ball sealer was higher. The low-density ball sealer had the highest sealing efficiency, and the high-density ball sealer had the lowest sealing efficiency. In addition, the ball sealer was most likely to seal the perforation in the second half interval of the perforation cluster or the first perforation. The temporary plugging model of horizontal shale gas wells based on CFD-DEM coupling can provide a visualization of the migration process of the ball sealer in the horizontal section and predict the migration speed of the ball sealer and the position of the sealed perforation, which provides a guideline for the temporary plugging fracturing design and field implementation in horizontal wells.

  • [1]
    雷群,杨战伟,翁定为,等. 超深裂缝性致密储集层提高缝控改造体积技术:以库车山前碎屑岩储集层为例[J]. 石油勘探与开发,2022,49(5):1012–1024.

    LEI Qun, YANG Zhanwei, WENG Dingwei, et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: a case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(5): 1012–1024.
    [2]
    蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191.

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191.
    [3]
    冯发勇,梁志彬,姚昌宇. 东胜气田锦30井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.

    FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 Well District, Dongsheng Gas Field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
    [4]
    郑新权,何春明,杨能宇,等. 非常规油气藏体积压裂2.0工艺及发展建议[J]. 石油科技论坛,2022,41(3):1–9.

    ZHENG Xinquan, HE Chunming, YANG Nengyu, et al. Volumetric fracturing 2.0 process for unconventional oil and gas reservoirs and and R&D suggestions[J]. Petroleum Science and Technology Forum, 2022, 41(3): 1–9.
    [5]
    熊春明,石阳,周福建,等. 深层油气藏暂堵转向高效改造增产技术及应用[J]. 石油勘探与开发,2018,45(5):888–893.

    XIONG Chunming, SHI Yang, ZHOU Fujian, et al. High efficiency reservoir stimulation based on temporary plugging and diverting for deep reservoirs[J]. Petroleum Exploration and Development, 2018, 45(5): 888–893.
    [6]
    郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183.

    GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances and development suggestions of temporary plugging and diverting fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183.
    [7]
    王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111.

    WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111.
    [8]
    杨恒林,吕嘉昕,谭鹏,等. 基于三维扫描技术的页岩暂堵压裂物理模拟实验[J]. 断块油气田,2022,29(1):118–123.

    YANG Henglin, LYU Jiaxin, TAN Peng, et al. Physical simulation experiment on shale temporary plugging and fracturing based on 3D scanning technology[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 118–123.
    [9]
    NOZAKI M, ZHU D, HILL A D D. Experimental and field data analyses of ball-sealer diversion[J]. SPE Production & Operations, 2013, 28(3): 286–295.
    [10]
    许江文,张谷畅,李建民,等. 暂堵剂形状对裂缝封堵影响规律的实验研究[J]. 断块油气田,2022,29(6):842–847.

    XU Jiangwen,ZHANG Guchang,LI Jianmin,et al. Experimental study on influence law of temporary plugging agent shape on fracture plugging[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 842–847.
    [11]
    路智勇. 转向压裂用暂堵剂研究进展与展望[J]. 科学技术与工程,2020,20(31):12691–12701.

    LU Zhiyong. Progress and prospect study on temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2020, 20(31): 12691–12701.
    [12]
    肖晖,李洁,曾俊. 投球压裂堵塞球运动方程研究[J]. 西南石油大学学报(自然科学版),2011,33(5):162–167.

    XIAO Hui, LI Jie, ZENG Jun. Ball motion equation in the ball sealer fracturing[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2011, 33(5): 162–167.
    [13]
    蔡华,张光波,杨阳,等. 投球暂堵压裂工艺在煤层气井的应用[J]. 中国煤层气,2020,17(6):17–20.

    CAI Hua, ZHANG Guangbo, YANG Yang, et al. Application of ball temporary plugging fracturing technology in coalbed methane wells[J]. China Coalbed Methane, 2020, 17(6): 17–20.
    [14]
    刘明明, 马收, 刘立之, 等. 页岩气水平井压裂施工中暂堵球封堵效果研究[J]. 钻采工艺, 2020, 43(6):44−48.

    LIU Mingming, MA Shou, LIU Lizhi, et al. Study on the effect of temporary plugging ball in fracturing of horizontal shale gas well[J]. Drilling & Production Technology, 2020, 43(6): 44−48.
    [15]
    郑志兵. 暂堵球封堵效果影响因素分析及其在Z油田的应用[J]. 石化技术,2017,24(2):55–56.

    ZHENG Zhibing. Analysis on influencing factors of plugging effect and its application in Z Oilfield[J]. Petrochemical Industry Technology, 2017, 24(2): 55–56.
    [16]
    李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92.

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92.
    [17]
    夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96.

    XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96.
    [18]
    周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89.

    ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89.
    [19]
    TAN Xuebao, WENG Xiaowei, AHMED T K, et al. An improved ball sealer model for well stimulation[R]. SPE 189573, 2018.
    [20]
    LI Xiaohe, CHEN Zhongmin, CHAUDHARY S, et al. An integrated transport model for ball-sealer diversion in vertical and horizontal wells[R]. SPE 96339, 2005.
    [21]
    张峰,荣莽,许明标. 页岩气水平井暂堵球运移坐封机理[J]. 科学技术与工程,2020,20(6):2202–2208.

    ZHANG Feng, RONG Mang, XU Mingbiao. Mechanism of temporary blocking ball’s transportation and blocking in shale gas horizontal wells[J]. Science Technology and Engineering, 2020, 20(6): 2202–2208.
    [22]
    张雄,耿宇迪,焦克波,等. 塔河油田碳酸盐岩油藏水平井暂堵分段酸压技术[J]. 石油钻探技术,2016,44(4):82–87.

    ZHANG Xiong, GENG Yudi, JIAO Kebo, et al. The technology of multi-stage acid fracturing in horizontal well for carbonate reservoir by temporary plugging ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82–87.
    [23]
    BROWN R W, NEILL G H, LOPER R G. Factors Influencing optimum ball sealer performance[J]. Journal of Petroleum Technology, 1963, 15(4): 450–454. doi: 10.2118/553-PA
    [24]
    周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业,2020,40(3):82–91.

    ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field in a horizontal well[J]. Natural Gas Industry, 2020, 40(3): 82–91.
    [25]
    达引朋,李建辉,王飞,等. 长庆油田特低渗透油藏中高含水井调堵压裂技术[J]. 石油钻探技术,2022,50(3):74–79.

    DA Yinpeng, LI Jianhui, WANG Fei, et al. Plugging and fracturing technology for high water cut wells in ultra-low permeability reservoirs of Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(3): 74–79.
    [26]
    CHENG Wan, LU Chunhua, FENG Guanxiong, et al. Ball sealer tracking and seating of temporary plugging fracturing technology in the perforated casing of a horizontal well[J]. Energy Exploration & Exploitation, 2021, 39(6): 2045–2061.
    [27]
    OOKAWARA S, AGRAWAL M, STREET D, et al. Quasi-direct numerical simulation of lift force-induced particle separation in a curved microchannel by use of a macroscopic particle model[J]. Chemical Engineering Science, 2007, 62(9):2454-2465.
    [28]
    SORIA J, GAUTHIER D, FLAMANt G, et al. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD[J]. Waste Management, 2015, 43(9):176-187.
    [29]
    吴宏杰,肖博,张旭东. 页岩气井暂堵重复压裂工艺技术研究及应用[J]. 石油化工应用,2020,39(9):53–56.

    WU Hongjie, XIAO Bo, ZHANG Xudong. Research and application of temporary plugging and re-fracturing technology for shale gas wells[J]. Petrochemical Application, 2020, 39(9): 53–56.
    [30]
    吕瑞华,刘奔,安琳. 水平井转向压裂用暂堵球运移封堵规律研究[J]. 石油机械,2020,48(7):117–122.

    LYU Ruihua, LIU Ben, AN Lin. Study on the migration and plugging Laws of temporary plugging ball for divert fracturing in horizontal wells[J]. China Petroleum Machinery, 2020, 48(7): 117–122.
    [31]
    廖仕孟,桑宇,宋毅,等. 页岩气水平井套管变形影响段分段压裂工艺研究及现场试验[J]. 天然气工业,2017,37(7):40–45.

    LIAO Shimeng, SANG Yu, SONG Yi, et al. Research and field-tests of staged fracturing technology for casing deformation section in horizontal shale gas wells[J]. Natural Gas Industry, 2017, 37(7): 40–45.
    [32]
    卢修峰,刘凤琴. 投球分压的理论验证及实例分析[J]. 石油钻采工艺,1994,16(3):57–62. doi: 10.13639/j.odpt.1994.03.014

    LU Xiufeng, LIU Fengqin. The theory verification and examples analysis of steering ball separate-layer fracturing[J]. Oil Drilling & Production Technology, 1994, 16(3): 57–62. doi: 10.13639/j.odpt.1994.03.014
  • Cited by

    Periodical cited type(48)

    1. 费世祥,崔越华,李小锋,汪淑洁,王晔,张正涛,孟培龙,郑小鹏,徐运动,高建文,罗文琴,蒋婷婷. 鄂尔多斯盆地中、东部深层煤岩气水平井高效开发主控因素. 石油与天然气地质. 2025(01): 273-287 .
    2. 姚志广,邵莎睿,黄永智,杜雨柔,董研,徐颖洁. 川南泸州区块深层页岩气井压裂参数优化. 天然气勘探与开发. 2025(02): 92-102 .
    3. 马收,邸士莹,魏玉华,程时清,刘明明,缪立南. 新型可变黏度共聚物压裂液的研制与应用. 特种油气藏. 2025(02): 137-144 .
    4. 赵金洲,于志豪,任岚,林然,吴建发,宋毅,沈骋,孙映. 真三轴应力下水化作用对深层页岩力学性质的影响——以四川盆地涪陵页岩气为例. 石油勘探与开发. 2025(03): 704-714 .
    5. 杨帆,李斌,王昆剑,文恒,杨睿月,黄中伟. 深部煤层气水平井大规模极限体积压裂技术——以鄂尔多斯盆地东缘临兴区块为例. 石油勘探与开发. 2024(02): 389-398 .
    6. 陈志杰,王开,张小强,姜玉龙,丁一,侯建,王文伟. 深部煤系储层缝间干扰多裂缝同步扩展规律试验研究. 矿业安全与环保. 2024(02): 74-81+89 .
    7. YANG Fan,LI Bin,WANG Kunjian,WEN Heng,YANG Ruiyue,HUANG Zhongwei. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block, eastern Ordos Basin, NW China. Petroleum Exploration and Development. 2024(02): 440-452 .
    8. 段贵府,牟建业,闫骁伦,宋毅,徐颖洁,王南. 川南深层页岩气水平井压裂窜扰主控因素及诱导机制. 中国石油勘探. 2024(03): 146-158 .
    9. 陈美玲,郭红光,董治,孟振江,吴彦成. 单轴荷载下含层理页岩损伤破坏过程及破坏模式研究. 重庆大学学报. 2024(08): 152-166 .
    10. 王鹏,李斌,王昆剑,张红杰,张迎春,杜佳,张林强,王晓琪,苏海岩,陈光辉,杨睿月. 神府区块深部煤层气钻完井关键技术及应用. 煤田地质与勘探. 2024(08): 44-56 .
    11. Yanyan Wang,Hua Liu,Xiaohu Hu,Cheng Dai,Sidong Fang. Fracture network types revealed by well test curves for shale reservoirs in the Sichuan Basin, China. Energy Geoscience. 2024(01): 268-278 .
    12. 李德旗,刘春亭,朱炬辉,胥云,王荣,张俊成,吴凯,潘丹丹. 高闭合压力下深层页岩气促缝网强支撑压裂工艺. 石油钻采工艺. 2024(03): 336-345 .
    13. 谭鹏,陈朝伟,赵庆,刘纪含,张谧. 页岩气多簇压裂断层活化机理与控制方法. 石油钻探技术. 2024(06): 107-116 . 本站查看
    14. 蒋廷学,卞晓冰,孙川翔,张峰,林立世,魏娟明,仲冠宇. 深层页岩气地质工程一体化体积压裂关键技术及应用. 地球科学. 2023(01): 1-13 .
    15. 刘红磊,周林波,陈作,薄启炜,马玉生. 中国石化页岩气电动压裂技术现状及发展建议. 石油钻探技术. 2023(01): 62-68 . 本站查看
    16. 范宇恒,周丰,蒋廷学,张士诚,白森,张晓锋,杨泉,余维初. 页岩气环保变黏压裂液的研究与应用. 特种油气藏. 2023(02): 147-152 .
    17. 陆应辉,唐凯,李奔驰,任国辉,聂靖雯,聂华富. 20号速装坐封工具设计及应用. 测井技术. 2023(02): 241-246 .
    18. 赵圣贤,夏自强,郑马嘉,张德良,刘绍军,刘永旸,张鉴,刘东晨. 页岩气剩余储量评价及提高储量动用对策——以川南长宁页岩气田五峰组—龙马溪组为例. 天然气地球科学. 2023(08): 1401-1411 .
    19. 翁定为,江昀,易新斌,何春明,车明光,朱怡晖. 基于页岩气井返排特征的闷井时间优化方法. 石油钻探技术. 2023(05): 49-57 . 本站查看
    20. 唐堂,郭建春,翁定为,石阳,许可,李阳. 基于PIV/PTV的平板裂缝支撑剂输送试验研究. 石油钻探技术. 2023(05): 121-129 . 本站查看
    21. 王奇生,王天宇,钟朋峻,张潘潘,盛茂,田守嶒. 龙马溪组页岩表面孔隙结构与细观力学特性研究. 石油科学通报. 2023(05): 626-636 .
    22. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    23. 张磊,刘安邦,钟亚军,张永飞,王建平. 大规模滑溜水压裂参数优化研究与应用. 非常规油气. 2022(02): 112-118 .
    24. 李曙光,王红娜,徐博瑞,甄怀宾,王成旺,袁朴. 大宁-吉县区块深层煤层气井酸化压裂产气效果影响因素分析. 煤田地质与勘探. 2022(03): 165-172 .
    25. 沈骋,范宇,曾波,郭兴午. 渝西区块页岩气储层改造优化对策与适应性分析. 油气地质与采收率. 2022(02): 131-139 .
    26. 吴建发,赵圣贤,张瑛堃,夏自强,李博,苑术生,张鉴,张成林,何沅翰,陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义. 天然气地球科学. 2022(04): 642-653 .
    27. 刘雨舟,张志坚,王磊,何国鸿. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用. 石油与天然气化工. 2022(03): 76-81+90 .
    28. 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 . 本站查看
    29. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    30. 刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 . 本站查看
    31. 陈志强,王海波,李凤霞,李远照,张驰,周彤. 基于施工参数的临界出砂速率预测模型. 油气井测试. 2022(03): 1-8 .
    32. 冯江荣,赵圣贤,夏自强,李志宏,刘永旸,何沅翰,高攀,王高翔. 物质点法在页岩储层压裂模拟研究中的应用. 断块油气田. 2022(05): 698-703 .
    33. 李嫣然,胡志明,刘先贵,蔡长宏,穆英,张清秀,曾术悌,郭静姝. 泸州地区龙马溪组深层页岩孔隙结构特征. 断块油气田. 2022(05): 584-590 .
    34. 何颂根,冉旭,于丹,王峻峰,邹枫. 页岩多重孔隙水相自吸能力评价. 断块油气田. 2022(05): 598-603 .
    35. 宋军备,张驰,李凤霞,陈志强,韦琦. 页岩气藏压裂防砂工艺优化与现场试验. 断块油气田. 2022(06): 769-774 .
    36. 张驰,周彤,肖佳林,韦琦,马文涛. 涪陵页岩气田加密井压裂技术的实践与认识. 断块油气田. 2022(06): 775-779 .
    37. 易良平,杨长鑫,杨兆中,宋毅,何小平,周小金,李小刚,胡俊杰. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律. 天然气工业. 2022(10): 84-97 .
    38. 沈骋,谢军,赵金洲,范宇,任岚. 提升川南地区深层页岩气储层压裂缝网改造效果的全生命周期对策. 天然气工业. 2021(01): 169-177 .
    39. 郭建春,赵志红,路千里,尹丛彬,陈朝刚. 深层页岩缝网压裂关键力学理论研究进展. 天然气工业. 2021(01): 102-117 .
    40. 刘宗堂. 初探旋转导向系统在深层页岩油水平井的应用. 中国设备工程. 2021(09): 130-131 .
    41. 张炜. 深部页岩压裂缝网体积模拟及应用. 石油钻采工艺. 2021(01): 97-103 .
    42. 梁天成,才博,蒙传幼,朱兴旺,刘云志,陈峰. 水力压裂支撑剂性能对导流能力的影响. 断块油气田. 2021(03): 403-407 .
    43. 郝丽华,甘仁忠,潘丽燕,阮东,刘成刚. 玛湖凹陷风城组页岩油巨厚储层直井体积压裂关键技术. 石油钻探技术. 2021(04): 99-105 . 本站查看
    44. 李凯凯,安然,岳潘东,陈世栋,杨凯澜,韦文. 安83区页岩油水平井大规模蓄能体积压裂技术. 石油钻探技术. 2021(04): 125-129 . 本站查看
    45. 王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 . 本站查看
    46. 向洪,隋阳,王静,王波,杨雄. 胜北深层致密砂岩气藏水平井细分切割体积压裂技术. 石油钻采工艺. 2021(03): 368-373 .
    47. 黄乘升. 油基钻井液在威远地区页岩气水平井中的应用. 化学工程与装备. 2021(09): 47-48+44 .
    48. 滕卫卫,李想. 底水火山岩油藏水平井优化设计. 特种油气藏. 2021(05): 120-125 .

    Other cited types(23)

Catalog

    Article Metrics

    Article views (211) PDF downloads (83) Cited by(71)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return