WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, SONG Daohai, WANG Lifeng, WANG Gang. Large-Section and Multi-Cluster Fracturing Technology for Horizontal Wells in the Jimsar Shale Oil Reservoir——Research and application of large-segment multi-cluster fracturing technology in jimsar shale oil horizontal well[J]. Petroleum Drilling Techniques, 2021, 49(4): 106-111. DOI: 10.11911/syztjs.2021091
Citation: WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, SONG Daohai, WANG Lifeng, WANG Gang. Large-Section and Multi-Cluster Fracturing Technology for Horizontal Wells in the Jimsar Shale Oil Reservoir——Research and application of large-segment multi-cluster fracturing technology in jimsar shale oil horizontal well[J]. Petroleum Drilling Techniques, 2021, 49(4): 106-111. DOI: 10.11911/syztjs.2021091

Large-Section and Multi-Cluster Fracturing Technology for Horizontal Wells in the Jimsar Shale Oil Reservoir——Research and application of large-segment multi-cluster fracturing technology in jimsar shale oil horizontal well

More Information
  • Received Date: April 14, 2021
  • Revised Date: July 04, 2021
  • Available Online: July 27, 2021
  • Reservoirs in the Lucaogou Formation of the Jimsar Sag have poor physical properties, strong heterogeneity, and poor crude oil fluidity. Accordingly, it is difficult to accurately stimulate favorable reservoirs with horizontal wells, and staged fracturing has only a limited positive effect on production. Contradiction is highlighted by the fact that a high investment yields only a low level of output. In order to solve these problems, non-uniform limited-entry perforation was conducted to improve the distribution of fracturing fluid in the fracture clusters in the sections. Temporary plugging at the fracture entrance and in the fracture were adopted to increase the net pressure, so as to generate complex fracture networks. In addition, fracturing parameters were optimized to facilitate the balanced initiation of multiple clusters of fractures in the sections. Finally, the large-section and multi-cluster fracturing technology suitable for the horizontal wells in the Jimsar shale oil reservoir was developed. Field applications showed that the technology can enhance the stimulation and production of shale oil reservoirs, and provide strong support for the economic and effective development of the shale oil reservoir in the Jimsar Sag.
  • [1]
    张治恒,田继军,韩长城,等. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏,2021,33(2):116–126.

    ZHANG Zhiheng, TIAN Jijun, HAN Changcheng, et al. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag, Jungger Basin[J]. Lithologic Reservoirs, 2021, 33(2): 116–126.
    [2]
    霍进,支东明,郑孟林,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J]. 石油实验地质,2020,42(4):506–512. doi: 10.11781/sysydz202004506

    HUO Jin, ZHI Dongming, ZHENG Menglin, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 506–512. doi: 10.11781/sysydz202004506
    [3]
    孙翰文,费繁旭,高阳,等. 吉木萨尔陆相页岩水平井压裂后产量影响因素分析[J]. 特种油气藏,2020,27(2):108–114.

    SUN Hanwen, FEI Fanxu, GAO Yang, et al. Production sensitivity analysis of fractured horizontal wells in Jimusar continental shale[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 108–114.
    [4]
    吴奇,胥云,刘玉章,等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺,2011,33(2):1–7. doi: 10.3969/j.issn.1000-7393.2011.02.001

    WU Qi, XU Yun, LIU Yuzhang, et al. The current situation of stimulated reservoir volume for shale in U. S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1–7. doi: 10.3969/j.issn.1000-7393.2011.02.001
    [5]
    JARIPATKE O A, BARMAN I, NDUNGU J G, et al. Review of Permian completion designs and results[R]. SPE 191560, 2018.
    [6]
    陈钊, 王天一, 姜馨淳, 等. 页岩气水平井段内多簇压裂暂堵技术的数值模拟研究及先导实验[J]. 天然气工业, 2021, 41(增刊1): 158–163.

    CHEN Zhao, WANG Tianyi, JIANG Xinchun, et al. Numerical simulation study and pilot test of multi-cluster fracturing and temporary plugging technology in the horizontal hole section of shale-gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement1): 158–163.
    [7]
    赵志恒,郑有成,范宇,等. 页岩储集层水平井段内多簇压裂技术应用现状及认识[J]. 新疆石油地质,2020,41(4):499–504.

    ZHAO Zhiheng, ZHENG Youcheng, FAN Yu, et al. Application and cognition of multi-cluster fracturing technology in horizontal wells in shale reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(4): 499–504.
    [8]
    雷群,杨立峰,段瑶瑶,等. 非常规油气“缝控储量”改造优化设计技术[J]. 石油勘探与开发,2018,45(4):719–726.

    LEI Qun, YANG Lifeng, DUAN Yaoyao, et al. The “fracture-controlled reserves” based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4): 719–726.
    [9]
    吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
    [10]
    焦方正. 陆相低压页岩油体积开发理论技术及实践:以鄂尔多斯盆地长7段页岩油为例[J]. 天然气地球科学,2021,32(6):836–844.

    JIAO Fangzheng. Theoretical technologies and practices concerning“volume development” of low pressure continental shale oil: case study of shale oil in Chang 7 member, Ordos Basin, China[J]. Natural Gas Geoscience, 2021, 32(6): 836–844.
    [11]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84.

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84.
    [12]
    段文广,李晓军. 国内外水平井分段压裂技术现状[J]. 现代制造技术与装备,2012(3):55–57. doi: 10.3969/j.issn.1673-5587.2012.03.028

    DUAN Wenguang, LI Xiaojun. Horizontal well at home and abroad staged fracturing technology status[J]. Modern Manufacturing Technology Equipment, 2012(3): 55–57. doi: 10.3969/j.issn.1673-5587.2012.03.028
    [13]
    张士诚,王世贵,张国良,等. 限流法压裂射孔方案优化设计[J]. 石油钻采工艺,2000,22(2):60–63. doi: 10.3969/j.issn.1000-7393.2000.02.016

    ZHANG Shicheng, WANG Shigui, ZHANG Guoliang, et al. Perforation optimizing design for operation of limited entry fracturing technology[J]. Oil Drilling & Production Technology, 2000,22(2): 60–63. doi: 10.3969/j.issn.1000-7393.2000.02.016
    [14]
    胡艾国. 水平井多簇起裂影响因素分析及控制起裂方法探讨[J]. 油气藏评价与开发,2017,7(6):52–56. doi: 10.3969/j.issn.2095-1426.2017.06.009

    HU Aiguo. Influence factors and control methods of multi-cluster fracture initiation of horizontal well[J]. Reservoir Evaluation and Development, 2017, 7(6): 52–56. doi: 10.3969/j.issn.2095-1426.2017.06.009
    [15]
    夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065

    XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
    [16]
    周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89.

    ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89.
    [17]
    李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92.

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Technique, 2020, 48(2): 88–92.
    [18]
    吴百烈,周建良,曹砚锋,等. 致密气水平井分段多簇压裂关键参数优选[J]. 特种油气藏,2016,23(4):127–130. doi: 10.3969/j.issn.1006-6535.2016.04.030

    WU Bailie, ZHOU Jianliang, CAO Yanfeng, et al. Key parameter optimization of horizontal well multi-stage multi-cluster fracturing in tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 127–130. doi: 10.3969/j.issn.1006-6535.2016.04.030
  • Related Articles

    [1]GUO Jianchun, ZHAO Feng, ZHAN Li, ZHANG Hang, ZENG Jie. Recent Advances and Development Suggestions of Temporary Plugging and Diverting Fracturing Technology for Shale Gas Reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170-183. DOI: 10.11911/syztjs.2023039
    [2]LI Wandong, WU Yang, LAN Xiaolin. Cementing Technologies of Balanced Off-Bottom Cement Plugs in Eastern Ecuador[J]. Petroleum Drilling Techniques, 2022, 50(4): 83-89. DOI: 10.11911/syztjs.2022032
    [3]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [4]LI Chunyue, FANG Haoqing, MOU Jianye, HUANG Yanfei, HU Wenting. Experimental Study on Temporary Fracture Plugging and Diverting Fracturing of Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88-92. DOI: 10.11911/syztjs.2020018
    [5]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [6]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [7]Zhang Lijun, Tian Ji, Zhu Guojin. Evaluation Methods for Initial Productivity of Directional Wells in Offshore Fault Block Oilfields[J]. Petroleum Drilling Techniques, 2015, 43(1): 111-116. DOI: 10.11911/syztjs.201501019
    [8]Xiong Wei, Zhu Zhiqiang, Gao Shusheng, Yang Farong, Hu Zhiming, Liu Huaxun. Material Balance Equation of WaterFlooding Gas Reservoir Considering Trapped Gas[J]. Petroleum Drilling Techniques, 2012, 40(2): 93-97. DOI: 10.3969/j.issn.1001-0890.2012.02.018
    [9]Wang Haijing, Xue Shifeng, Tong Xinghua. Analysis of Factors Influencing the Production Profile Equilibrium for Perforated Horizontal Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 78-82. DOI: 10.3969/j.issn.1001-0890.2012.01.016
    [10]Study on Hydraulic Fracture Initiation Pressure of Staged Fracturing in Perforated Horizontal Wells[J]. Petroleum Drilling Techniques, 2011, 39(4): 72-76. DOI: 10.3969/j.issn.1001-0890.2011.04.015
  • Cited by

    Periodical cited type(17)

    1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 .
    2. 刘彝,余成林,李云子,姜喜梅,于洋洋,吴均,刘京. 压裂用有机硅暂堵转向剂的制备及性能评价. 钻井液与完井液. 2025(02): 275-282 .
    3. 刘臣,卢海兵,陈钊,葛婧楠,孙挺. 大段多簇压裂改造技术优化与页岩气储层分析应用. 粘接. 2024(04): 121-124 .
    4. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 .
    5. 戴佳成,李根生,孙耀耀,李敬彬,王天宇. 基于水平井的径向井开采页岩油产能模拟和参数分析. 石油科学通报. 2024(04): 604-616 .
    6. 杨南鹏,范雨航,高彬,张世锋. 暂堵技术在致密砂岩气藏压裂中的应用. 能源与环保. 2023(01): 168-174 .
    7. 邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 . 本站查看
    8. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    9. 戴佳成,王天宇,田康健,李敬彬,田守嶒,李根生. 页岩油储层径向井立体压裂产能预测模型研究. 石油科学通报. 2023(05): 588-599 .
    10. 滕卫卫,古小龙,王博,张谷畅,吴宝成,李建民,葛洪魁. 段内多簇暂堵压裂中暂堵球直径优化研究. 钻采工艺. 2023(05): 61-67 .
    11. 董小卫,田志华,李一强,汪志,韩光耀,唐家财,刘帅. 水平井桥塞分段压裂管外光纤监测技术. 石油钻采工艺. 2023(05): 649-654 .
    12. 陈志明,赵鹏飞,曹耐,廖新维,王佳楠,刘辉. 页岩油藏压裂水平井压–闷–采参数优化研究. 石油钻探技术. 2022(02): 30-37 . 本站查看
    13. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    14. 樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 .
    15. 王成俊,张磊,展转盈,倪军,高怡文,王维波. 基于裂缝介质转变为多孔颗粒介质的调剖方法与矿场应用. 断块油气田. 2022(05): 709-713 .
    16. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律试验研究. 石油化工腐蚀与防护. 2022(05): 1-5+41 .
    17. 李臻,李真,程嘉瑞,崔璐. 高速射流孔眼冲刷腐蚀扩孔规律实验研究. 山东化工. 2022(20): 1-4+8 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (746) PDF downloads (169) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return