TANG Tang, GUO Jianchun, WENG Dingwei, et al. Experimental study of proppant transport in flat fracture based on PIV/PTV [J]. Petroleum Drilling Techniques,2023, 51(5):121-129. DOI: 10.11911/syztjs.2023083
Citation: TANG Tang, GUO Jianchun, WENG Dingwei, et al. Experimental study of proppant transport in flat fracture based on PIV/PTV [J]. Petroleum Drilling Techniques,2023, 51(5):121-129. DOI: 10.11911/syztjs.2023083

Experimental Study of Proppant Transport in Flat Fracture Based on PIV/PTV

More Information
  • Received Date: July 10, 2023
  • Revised Date: August 14, 2023
  • Available Online: August 24, 2023
  • In order to study the placement behaviors of proppants in fractures during hydraulic fracturing, proppant transport tests were carried out based on flat fractures, and the influence of pump injection displacement, fracturing fluid viscosity, injection position, and proppant type on the placement process of proppants was studied. By using particle image velocimetry (PIV)/ particle track velocimetry (PTV) technology, a two-phase flow velocity test of fracturing fluid–proppant was carried out, and the influence of different factors on final sand embankment shape was analyzed from the perspective of particle motion. The test results showed that: ① there were two typical modes of proppant placement in single flat fracture. The first one was that the front end of the fracture accumulated to the equilibrium height first, and the push-type back end was placed, while the second indicated the mode of overall longitudinal growth of sand embankments. The two modes could appear and transform at different stages of pumping. ② There were different controlling factors in the shape of sand embankments at different positions. The injection position and displacement primarily controlled the leading edge shape; the viscosity and displacement mainly controlled the middle shape, and the viscosity mainly controlled the trailing edge shape. ③ At the distal end of the fracture, there were two modes of proppant settlement, namely backflow type and direct type. The former was controlled by eddy current, while the latter only depended on gravity settlement. ④ Directional perforation + 70/140-mesh quartz sand with large displacement and medium-high viscosity (main proppant) + 40/70-mesh ceramsite bridging + long-distance transportation of 70/140-mesh quartz sand with large displacement and medium-high viscosity + 40/70-mesh ceramsite of displacement tail chasing could be considered in field construction, which took into account the long-distance placement in direction of fracture length and the high connectivity between fractures and wellbores in the near-wellbore area. It was concluded that the experimental study on the transport and placement of proppants in the flat fracture can provide a reference for the efficient placement of proppants in the main fracture of shale reservoir fracturing and the optimization of reservoir stimulation process parameters.

  • [1]
    马春晓,邢云,罗攀,等. 陆相页岩气储层裂缝支撑剂铺置规律研究[J]. 钻井液与完井液,2022,39(3):373–382.

    MA Chunxiao, XING Yun, LUO Pan, et al. Research on proppant migration law of fractures in ccontinental shale gas rreservoir[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 373–382.
    [2]
    徐加祥,希尔艾力·伊米提,杨立峰,等. 支撑剂在非贯穿型裂缝网络中的输送特征模拟[J]. 断块油气田,2022,29(4):532–538.

    XU Jiaxiang, YIMITI Xieraili, YANG Lifeng, et al. Simulation of proppant transportation characteristics in non-penetrating fracture network[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 532–538.
    [3]
    张潇,刘欣佳,田永东,等. 水力压裂支撑剂铺置形态影响因素研究[J]. 特种油气藏,2021,28(6):113–120. doi: 10.3969/j.issn.1006-6535.2021.06.015

    ZHANG Xiao, LIU Xinjia, TIAN Yongdong, et al. Study on factors influencing the displacement pattern of hydraulic fracturing proppant[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 113–120. doi: 10.3969/j.issn.1006-6535.2021.06.015
    [4]
    蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191. doi: 10.11911/syztjs.2023023

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reser-voirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191. doi: 10.11911/syztjs.2023023
    [5]
    马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841–855.

    MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841–855.
    [6]
    何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发,2021,11(2):135–145.

    HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 135–145.
    [7]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84.

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84.
    [8]
    雷群,胥云,才博,等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发,2022,49(1):166–172.

    LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166–172.
    [9]
    郭建春,周航宇,唐堂,等. 非常规储层压裂支撑剂输送实验及数值模拟研究进展[J]. 钻采工艺,2022,45(3):48–54.

    GUO Jianchun, ZHOU Hangyu, TANG Tang, et al. Advances of experiment and numerical simulation researches on proppant transport for unconventional reservoir fracturing[J]. Drilling & Production Technology, 2022, 45(3): 48–54.
    [10]
    蒋廷学,卞晓冰,侯磊,等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版),2021,45(6):95–101.

    JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95–101.
    [11]
    KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. Journal of Petroleum Technology, 1959, 11(7): 55–57. doi: 10.2118/1108-G
    [12]
    周德胜,张争,惠峰,等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺,2017,39(4):499–508.

    ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4): 499–508.
    [13]
    LIU Xinjia, ZHANG Xiao, WEN Qingzhi, et al. Experimental research on the proppant transport behavior in nonviscous and viscous fluids[J]. Energy & Fuels, 2020, 34(12): 15969–15982.
    [14]
    WU C H, SHARMA M M. Effect of perforation geometry and orientation on proppant placement in perforation clusters in a horizontal well[R]. SPE-179117-MS, 2016.
    [15]
    陈健,管彬,张涛. 页岩气储层支撑剂输送大尺度主缝实验装置研制[J]. 钻采工艺,2022,45(1):110–115.

    CHEN Jian, GUAN Bin, ZHANG Tao. Large-scale main fracture experimental device for proppant transportation in shale gas reservoir[J]. Drilling & Production Technology, 2022, 45(1): 110–115.
    [16]
    GRANT I, SMITH G H. Modern developments in particle image velocimetry[J]. Optics and Lasers in Engineering, 1988, 9(3/4): 245–264.
    [17]
    LI Genghong, LI Zhipeng, GAO Zhengming, et al. Particle image velocimetry experiments and direct numerical simulations of solids suspension in transitional stirred tank flow[J]. Chemical Engineering Science, 2018, 191: 288–299. doi: 10.1016/j.ces.2018.06.073
    [18]
    FRANK-GILCHRIST D P, PENKO A, CALANTONI J. Investigation of sand ripple dynamics with combined particle image and tracking velocimetry[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(10): 2019–2036. doi: 10.1175/JTECH-D-18-0054.1
    [19]
    FJAESTAD D, TOMAC I. Experimental investigation of sand proppant particles flow and transport regimes through narrow slots[J]. Powder Technology, 2019, 343: 495–511. doi: 10.1016/j.powtec.2018.11.004
    [20]
    FERNÁNDEZ M E, PUGNALONI L A, SÁNCHEZ M. Proppant transport in a planar fracture: Particle image velocimetry[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103860. doi: 10.1016/j.jngse.2021.103860
    [21]
    张涛, 郭建春, 孙堃, 等. 一种可实现三维流场测试的可视化平板裂缝装置: CN201910087439.5[P]. 2020-05-01.

    ZHANG Tao, GUO Jianchun, SUN Kun, et al. Visual flat crack device capable of realizing three-dimensional flow field test: CN201910087439.5[P]. 2020-05-01.
  • Related Articles

    [1]ZHANG Wen, LIU Xiangjun, LIANG Lixi, XIONG Jian. Test Research on Tight Sandstone Wellbore Stability During Gas Drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37-45. DOI: 10.11911/syztjs.2022094
    [2]CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060
    [3]HE Xinxing, LI Gao, DUAN Mubai, YANG Xu, XU Huanhuan, XIE Qiang. The Influence of Dynamic Deformation of Formation Fractures on the Plugging Effect[J]. Petroleum Drilling Techniques, 2018, 46(4): 65-70. DOI: 10.11911/syztjs.2018121
    [4]PEI Xueliang, REN Hong, WU Zhonghua, XU Junliang, ZHOU Hongguo, SUN Yanjun. Research and Field Test of a Pressure-Stabilizing Transfer Device for Natural Gas Hydrate Samples[J]. Petroleum Drilling Techniques, 2018, 46(3): 49-52. DOI: 10.11911/syztjs.2018003
    [5]ZHANG Jiankuo. The Mechanism and Influencing Factors of Methane Adsorption on Shale Surfaces[J]. Petroleum Drilling Techniques, 2017, 45(2): 101-106. DOI: 10.11911/syztjs.201702017
    [6]ZHOU Bo, YANG Jin, ZHOU Jianliang, LIU Zhengli, YANG Jiangang. A Jetting Flow Rate Design Method for Conductor Installation through Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2016, 44(3): 21-26. DOI: 10.11911/syztjs.201603004
    [7]HU Qiong, CHE Qiang, REN Xiaoling. Pilot Tests on Thermal-Mechanical Composite Rock-Breaking Methods[J]. Petroleum Drilling Techniques, 2016, 44(1): 29-33. DOI: 10.11911/syztjs.201601006
    [8]Ke Ke, Zhang Hui, Zhou Yuyang, Wang Lei, Feng Shilun. The Development of Testing Simulators for Conductor Jets Running in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 33-37. DOI: 10.11911/syztjs.201502006
    [9]Fan Yongtao, Gao Deli, Zhang Hui, Fang Jun. Simulation and Experimental Research on Mechanical Properties of Bottom Hole Assembly[J]. Petroleum Drilling Techniques, 2013, 41(3): 80-84. DOI: 10.3969/j.issn.1001-0890.2013.03.015
    [10]Shen Haichao, Cheng Yuanfang, Hu Xiaoqing. Numerical Simulation of Near Wellbore Reservoir Stability during Gas Hydrate Production by Depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76-81. DOI: 10.3969/j.issn.1001-0890.2012.02.015
  • Cited by

    Periodical cited type(24)

    1. 冯荟锦,曹渴望,王中华. 苏东储气库大井眼定向井钻井技术研究. 石化技术. 2025(02): 301-303 .
    2. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
    3. 许期聪,付强,周井红,陈宽,万夫磊. 四川盆地双鱼石区块特深井井身结构设计与适用性评价研究. 钻采工艺. 2024(02): 83-92 .
    4. 史配铭. 榆阳区块Φ311.2 mm及以上大井眼井段钻井提速关键技术. 石油工业技术监督. 2024(06): 46-52 .
    5. 伍晓龙,杜垚森,王庆晓,赵远,王晓赛. 冀中坳陷区域JZ04地热勘探井施工技术. 钻探工程. 2023(01): 107-114 .
    6. 刘保侠,张文涛,王宗明,张锐,张鼎. 井下小尺寸水力涡轮设计与结构优化. 石油矿场机械. 2023(04): 34-40 .
    7. 权春阳,权迎军,种奋刚,史配铭,权洋. 陕224储气库大井眼定向井钻完井关键技术. 山东化工. 2022(05): 159-160+165 .
    8. 张英传,王鲁朝,宋世杰,翟育峰. 罗布莎科学钻探工程技术及应用. 西部探矿工程. 2022(06): 84-88+90 .
    9. 黄志远,陈思安,薛龙. 东溪气田深层页岩气探井井身结构设计及优化. 西部探矿工程. 2022(09): 49-52 .
    10. 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
    11. 贾俊,康海涛,刘洪彬,张涵池. MS1井超深海相地层取心实践与认识. 钻采工艺. 2021(01): 142-146 .
    12. 张新亮,祁正玉,王晓强,侯越全. 川深1井非常规系列尾管悬挂器应用分析. 石油矿场机械. 2021(03): 57-61 .
    13. 伍晓龙,杜垚森,王庆晓. 冀中坳陷区域JZ04井钻井工程设计. 钻探工程. 2021(07): 84-90 .
    14. 赵润琦. 预探井杨柳1井钻井提速关键技术. 石油钻探技术. 2021(05): 26-30 . 本站查看
    15. 胡大梁,欧彪,张道平,肖国益,严焱诚,易世友. 川深1超深井钻井优化设计. 钻采工艺. 2020(02): 34-37+2-3 .
    16. 李萍,范永涛,刘泳敬,于志强,何谋军,董丙响. 侧钻井钻完井一体化工程可行性探讨. 石油钻采工艺. 2019(01): 8-13 .
    17. 黄志远. 东页深1井钻井设计与施工. 内蒙古石油化工. 2019(05): 45-46 .
    18. 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术. 石油钻探技术. 2019(03): 25-33 . 本站查看
    19. 叶金龙,沈建文,吴玉君,杜征鸿,睢圣,李林. 川深1井超深井钻井提速关键技术. 石油钻探技术. 2019(03): 121-126 . 本站查看
    20. 张伟国,狄明利,卢运虎,张健,杜宣. 南海西江油田古近系泥页岩地层防塌钻井液技术. 石油钻探技术. 2019(06): 40-47 . 本站查看
    21. 王天宇. 混合钻头技术特点及应用. 西部探矿工程. 2018(06): 73-74+76 .
    22. 徐康,刘光祥,胡文瑄,罗开平,陈迎宾,宫晗凝,张方君. 川西地区须四段砂岩储层特征及主控因素分析. 油气地质与采收率. 2018(02): 42-49 .
    23. 张晓广. 伊拉克米桑油田深井水平井钻井技术. 探矿工程(岩土钻掘工程). 2018(11): 24-28 .
    24. 黄志远. 元坝7井钻井设计与施工. 中国石油大学胜利学院学报. 2018(04): 26-29 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (205) PDF downloads (67) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return