Citation: | HUANG Liang, FENG Xinni, YANG Qin, et al. Microscopic occurrence characteristics of methane in kerogen nanopores of deep shale reservoirs [J]. Petroleum Drilling Techniques,2023, 51(5):112-120. DOI: 10.11911/syztjs.2023086 |
The accurate evaluation of shale gas reserves relies on the understanding of methane occurrence characteristics in deep shale reservoirs under high-temperature and high-pressure conditions. First, molecular models of kerogen nanopores with different shapes and sizes were constructed based on kerogen structure unit of deep shale from the Longmaxi Formation. Second, simulations of methane occurrence were conducted by coupling a grand canonical Monte Carlo algorithm and a molecular dynamics algorithm. These simulations were focused on analyzing the influence of pressure, temperature, pore size, and pore shape on methane occurrence quantity. Finally, microscopic occurrence mechanisms of methane were explained by discussing the microscopic distribution characteristics of methane, the microscopic interaction characteristics between methane and pore walls, and the preferential adsorption sites of methane. The results showed that under deep high-pressure conditions, excess adsorption and dissolution of methane were relatively insensitive to temperature. As the temperature increased, both the absolute adsorption and free gas volume of methane decreased. The mesopore size of kerogen had almost no effect on the adsorption and dissolution of methane, and the changes in the total gas volume due to pore size were mainly contributed by free gas. In comparison to cylindrical pores, methane exhibited a higher total gas volume in slit-like pores, but the excess adsorption was lower. Methane molecules preferentially adsorbed at the thiophene sites on kerogen structure. The research findings provide a theoretical basis for estimating the reserves of deep shale gas.
[1] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.
|
[2] |
马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,2018,45(1):161–169.
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.
|
[3] |
李嫣然,胡志明,刘先贵,等. 泸州地区龙马溪组深层页岩孔隙结构特征[J]. 断块油气田,2022,29(5):584–590.
LI Yanran, HU Zhiming, LIU Xiangui, et al. The pore structure characteristics of deep shale in Longmaxi Formation of Luzhou area[J]. Fault-Block Oil & Gas Field, 2022, 29(5): 584–590.
|
[4] |
廖璐璐,李根生,宋先知,等. 我国脱碳路径与油公司能源转型策略研究[J]. 石油钻探技术,2023,51(1):115–122.
LIAO Lulu, LI Gensheng, SONG Xianzhi, et al. The study on decarbonization pathway and structural transformation of oil companies in China[J]. Petroleum Drilling Techniques, 2023, 51(1): 115–122.
|
[5] |
陈更生,吴建发,刘勇,等. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术[J]. 天然气工业,2021,41(1):72–82.
CHEN Gengsheng, WU Jianfa, LIU Yong, et al. Geology-engineering integration key technologies for ten billion cubic meters of shale gas productivity construction in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 72–82.
|
[6] |
李晶辉,韩鑫,黄思婧,等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发,2022,12(3):455–461.
LI Jinghui, HAN Xin, HUANG Sijing, et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455–461.
|
[7] |
张东晓,杨婷云. 页岩气开发综述[J]. 石油学报,2013,34(4):792–801.
ZHANG Dongxiao, YANG Tingyun. An overview of shale-gas production[J]. Acta Petrolei Sinica, 2013, 34(4): 792–801.
|
[8] |
黄昆,李欣阳,朱鑫磊,等. 页岩气增产用脉冲放电冲击波装置研究[J]. 石油钻探技术,2022,50(4):97–103.
HUANG Kun, LI Xinyang, ZHU Xinlei, et al. Research on a shock wave device with pulsed discharge for shale gas stimulation[J]. Petroleum Drilling Techniques, 2022, 50(4): 97–103.
|
[9] |
李倩文,唐令,庞雄奇. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评,2020,66(2):457–466.
LI Qianwen, TANG Ling, PANG Xiongqi. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 2020, 66(2): 457–466.
|
[10] |
唐鑫,朱炎铭,郭远臣,等. 四川盆地龙马溪组页岩储层孔隙及伊利石甲烷吸附特征[J]. 天然气地球科学,2018,29(12):1809–1816.
TANG Xin, ZHU Yanming, GUO Yuanchen, et al. Molecular simulation of methane adsorption within illite minerals in the shale of the Longmaxi Formation based on a grand canonical Monte Carlo method and pore size distribution[J]. Natural Gas Geoscience, 2018, 29(12): 1809–1816.
|
[11] |
纪文明,朱孟凡,宋岩,等. 南方海相页岩气赋存状态演化规律[J]. 中南大学学报(自然科学版),2022,53(9):3590–3602.
JI Wenming, ZHU Mengfan, SONG Yan, et al. Evolution characterization of marine shale gas occurrence state in South China[J]. Journal of Central South University(Science and Technology), 2022, 53(9): 3590–3602.
|
[12] |
石钰,杨晓娜,李树刚,等. 含水量对干酪根中多组分气体吸附和扩散的影响: 分子模拟研究[J]. 西安石油大学学报(自然科学版),2021,36(4):50–57.
SHI Yu, YANG Xiaona, LI Shugang, et al. Effect of moisture on adsorption and diffusion of multi-component gas in kerogen: A molecular simulation study[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(4): 50–57.
|
[13] |
黄亮,宁正福,王庆,等. 湿度对CH4/CO2在干酪根中吸附的影响:分子模拟研究[J]. 石油科学通报,2017,2(3):422–430.
HUANG Liang, NING Zhengfu, WANG Qing, et al. Effect of moisture on CH4/CO2 adsorption on kerogen: A molecular simulation study[J]. Petroleum Science Bulletin, 2017, 2(3): 422–430.
|
[14] |
HUANG Shan, MA Xinhua, YANG Hongzhi, et al. Experimental characterization and molecular modeling of kerogen in Silurian deep gas shale from southern Sichuan Basin, China[J]. Energy Reports, 2022, 8: 1497–1507. doi: 10.1016/j.egyr.2021.12.056
|
[15] |
黄亮. 基于分子模拟的页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学(北京), 2020.
HUANG Liang. Molecular simulation study on competitive adsorption mechanism of multi-components in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[16] |
方镕慧,刘晓强,张聪,等. 温度压力耦合作用下的页岩气吸附分子模拟:以鄂西地区下寒武统为例[J]. 天然气地球科学,2022,33(1):138–152.
FANG Ronghui, LIU Xiaoqiang, ZHANG Cong, et al. Molecular simulation of shale gas adsorption under temperature and pressure coupling: Case study of the Lower Cambrian in western Hubei Province[J]. Natural Gas Geoscience, 2022, 33(1): 138–152.
|
[17] |
KATTI D R, UPADHYAY H B, KATTI K S. Molecular interactions of kerogen moieties with Na-montmorillonite: an experimental and modeling study[J]. Fuel, 2014, 130: 34–45. doi: 10.1016/j.fuel.2014.04.009
|
[18] |
KATTI D R, THAPA K B, KATTI K S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models[J]. Fuel, 2017, 199: 641–652. doi: 10.1016/j.fuel.2017.03.021
|
[19] |
汪迪. 油页岩中干酪根的提取与结构构建及反应性研究[D]. 长春: 东北电力大学, 2016.
WANG Di. Study on the reactivity of kerogen in oil shale based on the kerogen abstraction and molecular structure[D]. Changchun: Northeast Electric Power University, 2016.
|
[20] |
冯敏. 油页岩中有机质的表征[D]. 北京: 北京化工大学, 2015.
FENG Min. Structural analysis of oil shale organic matters[D]. Beijing: Beijing University of Chemical Technology, 2015.
|
[21] |
HAGLER A T, LIFSON S, DAUBER P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields[J]. Journal of the American Chemical Society, 1979, 101(18): 5122–5130. doi: 10.1021/ja00512a002
|
[22] |
MARTIN M G, SIEPMANN J I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes[J]. The Journal of Physical Chemistry B, 1998, 102(14): 2569–2577. doi: 10.1021/jp972543+
|
[23] |
杨萍,孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版),2009,32(1):51–54.
YANG Ping, SUN Yimin. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University(Natural Science), 2009, 32(1): 51–54.
|
[24] |
黄亮,陈秋桔,吴建发,等. 深层页岩伊利石中甲烷吸附特征分子模拟[J]. 中南大学学报(自然科学版),2022,53(9):3522–3531.
HUANG Liang, CHEN Qiujie, WU Jianfa, et al. Molecular simulation of methane adsorption characteristics in illite nanopores of deep shale reservoirs[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3522–3531.
|
[25] |
邓泽,王红岩,姜振学,等. 页岩和煤岩的孔隙结构差异及其天然气运移机理[J]. 天然气工业,2022,42(11):37–49.
DENG Ze, WANG Hongyan, JIANG Zhenxue, et al. Pore structure differences between shale and coal and their gas migration mechanisms[J]. Natural Gas Industry, 2022, 42(11): 37–49.
|
[26] |
秦钰佳,唐鑫,程龙飞,等. 基于分形理论的页岩纳米孔隙粒度效应探究[J]. 断块油气田,2022,29(4):520–526.
QIN Yujia, TANG Xin, CHENG Longfei, et al. Study on the particle size effect of shale nanopore based on fractal theory[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 520–526.
|
[27] |
徐传正,冯烁,田继军,等. 龙马溪组岩相类型及其对孔隙特征的影响因素[J]. 西南石油大学学报(自然科学版),2021,43(1):51–60.
XU Chuanzheng, FENG Shuo, TIAN Jijun, et al. Lithofacies Types of Longmaxi Formation and Its Influencing Factors on Pore Characteristics[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 51–60.
|