LI Yumei, LYU Wei, SONG Jie, LI Jun, YANG Hongwei, YU Liwei. Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108-113. DOI: 10.11911/syztjs.201604019
Citation: LI Yumei, LYU Wei, SONG Jie, LI Jun, YANG Hongwei, YU Liwei. Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108-113. DOI: 10.11911/syztjs.201604019

Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs

More Information
  • Received Date: July 30, 2015
  • Revised Date: April 17, 2016
  • To perform the numerical simulation of complex network fractures in stratified shale gas reservoirs with natural fractures, a numerical model for network fractures was set up to determine interactions between hydraulic fractures and natural fractures by using universal distinct element code (UDEC) of non-continuous medium simulation based on numerical algorithms of seepage-stress coupling. The model was used to analyze the effect of the hydraulic fracture length, the natural fracture dip angle, the internal friction angle and the net treatment pressures on fracture network extension. The results showed that hydraulic fractures extend from the fracture tip near the well bore, and they experience shear failure along the strike of natural fractures. In the process, the connected area of natural fracture network would increase with the increases of hydraulic fractures length. It is more likely to form complex fractures or network fractures in the case of relatively large natural fracture dip angles. When the internal friction angle of the natural fractures is reduced, the connected area of natural fractures will increase and it is easier to form complex network fractures. Under a certain range of horizontal stress, fracture growth patterns would become more complex and it would be easier for tips near fractures to form network fractures as net pressure coefficients increase. Numerical simulation results could provide guidance for further understanding on shale gas fracturing fracture extension mechanism in areas away from wells.
  • [1]
    吴奇,胥云,王腾飞,等.增产改造理念的重大变革:体积改造技术概论[J].天然气工业,2011,31(4):7-12,16.WU Qi,XU Yun,WANG Tengfei,et al.The revolution of reservoir stimulation:an introduction of volume fracturing[J].Natural Gas Industry,2011,31(4):7-12,16.
    [2]
    JARIPATKE O A,CHONG K K,GRIESER W V,et al.A completions roadmap to shale-play development:a review of successful approaches toward shale-play stimulation in the last two decades[R].SPE 130369,2010.
    [3]
    王欢,廖新维,赵晓亮,等.非常规油气藏储层体积改造模拟技术研究进展[J].特种油气藏,2014,21(2):8-15.WANG Huan,LIAO Xinwei,ZHAO Xiaoliang,et al.The progress of reservoir stimulation technology in unconventional oil and gas reservoir[J].Special OilGas Reservoirs,2014,21(2):8-15.
    [4]
    衡帅,杨春和,郭印同,等.层理对页岩水力裂缝扩展的影响研究[J].岩石力学与工程学报,2015,34(2):228-237.HENG Shuai,YANG Chunhe,GUO Yintong,et al.Influence of bedding planes on hydraulic fracture propagation in shale formations[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):228-237.
    [5]
    蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术,2011,39(3):36-40.JIANG Tingxue,JIA Changgui,WANG Haitao,et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques,2011,39(3):36-40.
    [6]
    刘雨,艾池.多级压裂诱导应力作用下天然裂缝开启规律研究[J].石油钻探技术,2015,43(1):20-26.LIU Yu,AI Chi.Opening of natural fractures under induced stress inmulti-stage fracturing[J].Petroleum Drilling Techniques,2015,43(1):20-26.
    [7]
    蒋廷学.页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J].石油钻探技术,2013,41(2):7-12.JIANG Tingxue.The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J].Petroleum Drilling Techniques,2013,41(2):7-12.
    [8]
    BLANTON T L.Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[R].SPE 15261,1986.
    [9]
    DERSHOWITZ W S,COTTRELL M G,LIM D H,et al.A discrete fracture network approach for evaluation of hydraulic fracture stimulation of naturally fractured reservoirs[R].ARMA10-475,2010.
    [10]
    RIAHI A,DAMJANAC B.Numerical study of the interaction between injection and the discrete fracture network in enhanced geothermal reservoirs[R].ARMA-2013-333,2013.
    [11]
    COTTRELL M,HOSSEINPOUR H,DERSHOWITZ W.Rapid discrete fracture analysis of hydraulic fracture development in naturally fractured reservoirs[R].SPE 168843,2013.
    [12]
    McCLURE M,BABAZADEH M,SHIOZAWA S,et al.Fully coupled hydromechanical simulation of hydraulic fracturing in three-dimensional discrete fracture networks[R].SPE 173354,2015.
    [13]
    NAGEL N B,SANCHEZ-NAGEL M A,GARCIA X,et al.A numerical evaluation of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system[R].ARMA-2012-287,2012.
    [14]
    NAGEL N B,SANCHEZ-NAGEL M,LEE B,et al.Hydraulic fracturing optimization for unconventional reservoirs-the critical role of the mechanical properties of the natural fracture network[R].SPE 161934,2012.
    [15]
    Itasca Consulting Group Inc.Universal distinct element code user’s guide[M].4th ed.Minneapolis:Itasca Consulting Group Inc,2000.
    [16]
    CUNDALL P A,HART R D.Analysis of block test No.1.inelastic rock mass behavior:phase 2-a characterization of joint behavior (final report)[R].[S.l.]:[s.n.],1984.
    [17]
    BARTON N,BANDIS S,BAKHTAR K.Strength,deformation and conductivity coupling of rock joints[J].International Journal of Rock Mechanics and Mining ScienceGeomechanics Abstracts,1985,22(3):121-140.
    [18]
    NAGEL N B,SANCHEZ M A,LEE B.Gas shale hydraulic fracturing:a numerical evaluation of the effect of geomechanical parameters[R].SPE 152192,2012.
    [19]
    OLSON J E,TALEGHANI A D.Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[R].SPE 119739,2009.
  • Related Articles

    [1]YIN Shuai, ZHAO Junhui, LIU Ping, SHEN Zhicheng. Opening Conditions and Extension Law of Natural and Hydraulic Fractures in Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 98-105. DOI: 10.11911/syztjs.2024022
    [2]WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056
    [3]SUN Xiaofeng, ZHANG Kebo, YUAN Yujin, NI Xiaodong, CHEN Ye. The Establishment and Correction of a Prediction Model for the Repose Angle of a Cuttings Bed in Highly Deviated Well Interval[J]. Petroleum Drilling Techniques, 2019, 47(4): 22-28. DOI: 10.11911/syztjs.2019039
    [4]HE Xinxing, LI Gao, DUAN Mubai, YANG Xu, XU Huanhuan, XIE Qiang. The Influence of Dynamic Deformation of Formation Fractures on the Plugging Effect[J]. Petroleum Drilling Techniques, 2018, 46(4): 65-70. DOI: 10.11911/syztjs.2018121
    [5]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [6]LI Wei, ZHAO Huan, LI Siqi, Ll Li, SUN Wenfeng. 2D Characterization of Geometric Features and Connectivity of Fracture Networks in Shale Formations[J]. Petroleum Drilling Techniques, 2017, 45(6): 70-76. DOI: 10.11911/syztjs.201706013
    [7]WU Shengnan, ZHANG Laibin, DENG Jingen, CAO Yanfeng, WEN Min. Monte Carlo Simulation-Based Uncertainty Analysis on Extreme Water Injection Pressure[J]. Petroleum Drilling Techniques, 2016, 44(3): 109-114. DOI: 10.11911/syztjs.201603020
    [8]PENG Hao, LI Qian, YIN Hu, TANG Zhiqiang. A New Solution Method for the Lietard Natural Fracture Width Prediction Model[J]. Petroleum Drilling Techniques, 2016, 44(3): 72-76. DOI: 10.11911/syztjs.201603013
    [9]Wang Xu, Zhang Xinshu, You Yunxiang. The Study on Scale Effect of Internal Solitary Wave Loads of Cylindrical Drilling Platforms[J]. Petroleum Drilling Techniques, 2015, 43(4): 30-36. DOI: 10.11911/syztjs.201504006
    [10]Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
  • Cited by

    Periodical cited type(16)

    1. 刘建锋,何鑫,薛福军,代晶晶,杨建雄,黄浩勇,侯正猛. 天然裂缝多特征组合对页岩储层渗流的影响. 采矿与岩层控制工程学报. 2024(01): 131-140 .
    2. 张磊,陶永富,贺沛,吴金桥,罗攀. 延长油田陆相页岩气水平井产量影响因素研究. 非常规油气. 2022(03): 90-95 .
    3. 余佩蓉,郑国庆,孙福泰,王振林. 玛湖凹陷风城组页岩油藏水平井压裂裂缝扩展模拟. 新疆石油地质. 2022(06): 750-756 .
    4. 万涛,覃建华,张景. 致密油藏小井距开发交替压裂实践. 新疆石油天然气. 2022(04): 26-32 .
    5. 史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨. 石油科学通报. 2021(01): 92-113 .
    6. 张衍君,葛洪魁,徐田录,黄文强,曾会,陈浩. 体积压裂裂缝前端粉砂分布规律试验研究. 石油钻探技术. 2021(03): 105-110 . 本站查看
    7. 赵金洲,任岚,蒋廷学,胡东风,吴雷泽,吴建发,尹丛彬,李勇明,胡永全,林然,李小刚,彭瑀,沈骋,陈曦宇,尹庆,贾长贵,宋毅,王海涛,李远照,吴建军,曾斌,杜林麟. 中国页岩气压裂十年:回顾与展望. 天然气工业. 2021(08): 121-142 .
    8. 咸玉席,陈超峰,封猛,郝有志. 页岩油藏裂缝网络多相渗流数值模拟研究. 石油钻探技术. 2021(05): 94-100 . 本站查看
    9. 姚晓勇. FMI在井中的应用研究. 科技风. 2020(16): 111 .
    10. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
    11. 李玉梅,思娜,吕炜,宋杰,张涛,于丽维. 基于离散元数值法的页岩压裂复杂网络裂缝研究. 钻采工艺. 2019(01): 46-49+4 .
    12. 李亚龙,刘先贵,胡志明,端祥刚,常进,周广照. 页岩储层压裂缝网模拟研究进展. 石油地球物理勘探. 2019(02): 480-492+242 .
    13. 谭钲扬,马力,欧阳传湘,林飞,方建涛. 聚驱复杂裂缝参数数值模拟研究. 当代化工. 2018(11): 2413-2416 .
    14. 苏超,李士斌,刘照义,徐晶,薛东阳,张维薇. 体积压裂裂缝对地应力场干扰规律的研究. 北京石油化工学院学报. 2017(04): 16-23 .
    15. 杨金辉,李立,李钟洋,鞠斌山. 滑脱和应力敏感效应对页岩气开发动态影响的数值模拟研究. 石油钻探技术. 2017(01): 83-90 . 本站查看
    16. 李建雄,刘茂林,郭天魁,刘晓强,李小龙. 径向井引导水力裂缝扩展机理. 断块油气田. 2016(06): 803-806 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (4231) PDF downloads (4980) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return