Citation: | ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065 |
[1] |
杜开元, 段国斌, 徐刚, 等.深层页岩气井压裂加砂工艺优化的微地震评价[J].石油地球物理勘探, 2018, 53(增刊2): 148–155.
DU Kaiyuan, DUAN Guobin, XU Gang, et al. Micro-seismic evaluation of fracturing and sand adding technology optimization in deep shale gas wells[J]. Petroleum Geophysical Explorating, 2018, 53(supplement 2): 148–155.
|
[2] |
SHAKEEL M, ABDULRAZZAQ W, ABDULLATIF O, et al. Detailed comparison of processed sand vs. unprocessed sand vs. high-strength proppant for fracturing applications[R]. SPE 194924, 2019.
|
[3] |
张国亮,兰中孝,刘鹏. 大庆探区深层火山岩气藏压裂施工控制[J]. 石油勘探与开发,2009,36(4):529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020
ZHANG Guoliang, LAN Zhongxiao, LIU Peng. Fracturing control method for deep volcanic rock gas reservoirs in Daqing exploration area[J]. Petroleum Exploration and Development, 2009, 36(4): 529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020
|
[4] |
KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. JPT, 1959, 11(7): 55–57. doi: 10.2118/1108-G
|
[5] |
SAHAI R, MISKIMINS J L, OLSON K E. Laboratory results of proppant transport in complex fracture systems[R]. SPE 168579, 2014.
|
[6] |
KIM J Y, JING Z, MORITA N. Proppant transport studies using three types of fracture slot equipment[R]. ARMA-2019-0273, 2019.
|
[7] |
温庆志,杨英涛,王峰,等. 新型通道压裂支撑剂铺置试验[J]. 中国石油大学学报(自然科学版),2016,40(5):112–117.
WEN Qingzhi, YANG Yingtao, WANG Feng, et al. Experimental study on an innovative proppant placement method for channel fracturing technique[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(5): 112–117.
|
[8] |
狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田,2019,26(3):355–359.
DI Wei. Migration law and placement characteristics of proppant in fracture[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 355–359.
|
[9] |
潘林华,张烨,王海波,等. 页岩复杂裂缝支撑剂分流机制[J]. 中国石油大学学报(自然科学版),2020,44(1):61–70.
PAN Linhua, ZHANG Ye, WANG Haibo, et al. Mechanism study on proppants diversion during shale complex fracturing of shale rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 61–70.
|
[10] |
张矿生,张同伍,吴顺林,等. 不同粒径组合支撑剂在裂缝中运移规律模拟[J]. 油气藏评价与开发,2019,9(6):72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013
ZHANG Kuangsheng, ZHANG Tongwu, WU Shunlin, et al. Simulation of proppant transport in fracture with different combinations of particle size[J]. Reservoir Evaluation and Development, 2019, 9(6): 72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013
|
[11] |
潘林华,张烨,程礼军,等. 页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律[J]. 天然气工业,2018,38(5):61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007
PAN Linhua, ZHANG Ye, CHENG Lijun, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 38(5): 61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007
|
[12] |
李栋,牟建业,姚茂堂,等. 裂缝型储层酸压暂堵材料实验研究[J]. 科学技术与工程,2016,16(2):158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031
LI Dong, MOU Jianye, YAO Maotang, et al. Experimental study of temporary plugging materials to acid fracturing in fractured carbonate reservoir[J]. Science Technology and Engineering, 2016, 16(2): 158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031
|
[13] |
徐传奇,李海燕,张小锋,等. 纳米封堵剂性能评价及机理分析[J]. 钻采工艺,2019,42(2):100–103.
XU Chuanqi, LI Haiyan, ZHANG Xiaofeng, et al. Performance evaluation for new type nano plugging agents and its mechanism analysis[J]. Drilling & Production Technology, 2019, 42(2): 100–103.
|
[14] |
李丹,伊向艺,王彦龙,等. 压裂用纳米体膨颗粒裂缝封堵性能实验研究[J]. 钻井液与完井液,2017,34(4):112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021
LI Dan, YI Xiangyi, WANG Yanlong, et al. Experimental study on fracture plugging performance of volumetric expansion nano particles used in well fracturing[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021
|
[15] |
李志勇,杨超,马攀,等. 高温堵漏凝胶性能评价系统[J]. 钻井液与完井液,2015,32(2):52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013
LI Zhiyong, YANG Chao, MA Pan, et al. Instrument for high temperature gel LCM evaluation[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013
|
[16] |
VAN OORT E, FRIEDHEIM J E, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening well-bores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.
|
[17] |
ZHANG Zhuo, MAO Shaowen, ZHAO Heqian, et al. Simulation of proppant transport in field-scale curved fractures[R]. URTEC-2020-3070-MS, 2020.
|
[18] |
GERI M B, IMQAM A, DUNN-NORMAN S. Proppant transport behavior in inclined versus vertical hydraulic fractures: an experimental study[R]. SPE 191813, 2018.
|
[19] |
BLYTON C A, GALA D P, SHARMA M M. A study of proppant transport with fluid flow in a hydraulic fracture[J]. SPE Drilling & Completion, 2018, 33(4): 307–323.
|
[20] |
李玉梅,吕炜,宋杰,等. 层理性页岩气储层复杂网络裂缝数值模拟研究[J]. 石油钻探技术,2016,44(4):108–113.
LI Yumei, LYU Wei, SONG Jie, et al. Numerical simulation study on the complex network fractures of stratified shale gas reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108–113.
|
[1] | LI Zhong, XIE Renjun, YIN Zhiming, LUO Hongbin, CAI Wenjun, TIAN Deqiang. Study on Gas-Liquid Gravity Displacement Law of Constant-Volume Enclosed System in Fractured Gas-Bearing Beds[J]. Petroleum Drilling Techniques, 2025, 53(3): 30-39. DOI: 10.11911/syztjs.2025066 |
[2] | LI Fuqiang, SONG Zhaohui, YI Ming, LIU Hongtao, ZHANG Sen, DIAO Binbin. Calculation of Optimal Distance Between Electrode and Probe in Relief Well Magnetic Ranging[J]. Petroleum Drilling Techniques, 2024, 52(3): 34-39. DOI: 10.11911/syztjs.2024008 |
[3] | JING Silin, SONG Xianzhi, SUN Yi, XU Zhengming, ZHOU Mengmeng. Study on Axial Transport Laws of Cuttings Bed in Horizontal Wells Based on a Differential Pressure Method[J]. Petroleum Drilling Techniques, 2024, 52(1): 54-61. DOI: 10.11911/syztjs.2024007 |
[4] | TANG Tang, GUO Jianchun, WENG Dingwei, SHI Yang, XU Ke, LI Yang. Experimental Study of Proppant Transport in Flat Fracture Based on PIV/PTV[J]. Petroleum Drilling Techniques, 2023, 51(5): 121-129. DOI: 10.11911/syztjs.2023083 |
[5] | YU Ruifeng, DIAO Binbin, GAO Deli. Optimal Selection Method of Magnetic Ranging Tools for Relief Well Engineering Based on the Measurement Error of the Adjacent Well Distance[J]. Petroleum Drilling Techniques, 2021, 49(6): 118-124. DOI: 10.11911/syztjs.2021129 |
[6] | WU Zhiying, LU Baoping, HU Yafei, JIANG Tingxue. Experimental Study on the Physical Simulation of Dynamic Sand Transport in Multi-Stage Fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106-110. DOI: 10.11911/syztjs.2020093 |
[7] | LI Chunyue, FANG Haoqing, MOU Jianye, HUANG Yanfei, HU Wenting. Experimental Study on Temporary Fracture Plugging and Diverting Fracturing of Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88-92. DOI: 10.11911/syztjs.2020018 |
[8] | HE Shiming, LIU Sen, ZHAO Zhuanling, TANG Ming, LI Heng, DENG Fuyuan. The Dynamic Laws of Overflow Intrusion in Fractured Formations[J]. Petroleum Drilling Techniques, 2018, 46(6): 26-32. DOI: 10.11911/syztjs.2018137 |
[9] | Liu Xiushan, Qi Shangyi, Liu Ziheng. Analytical Algorithm for Normal-Plane Scanning of Interwell Distance[J]. Petroleum Drilling Techniques, 2015, 43(2): 8-13. DOI: 10.11911/syztjs.201502002 |
[10] | Zhou Weidong, Xia Boru, Li Luopeng, Shi Wei. Variable Jet Distance and Multi-Stage Cutting Head with Abrasive Water Jet[J]. Petroleum Drilling Techniques, 2012, 40(1): 109-113. DOI: 10.3969/j.issn.1001-0890.2012.01.022 |
1. |
徐荣利, 卜向前, 陈文斌, 张彦军, 王广涛, 李昌恒, 贾煦亮, 武安安, 山树民. 长庆致密油超短水平井压裂技术探索与实践. 中国石油勘探. 2025(03)
![]() | |
2. |
徐荣利, 齐银, 薛小佳, 陈文斌, 徐创朝, 张彦军. 庆城页岩油藏结构化驱油压裂技术研究与应用. 石油钻探技术. 2025(02)
![]() | |
3. |
杨连如,李锦锋,孙继继,王茜,吴彦君,任颖惠. 致密油地质工程一体化评价体系研究——以鄂尔多斯盆地甘泉西部长8油藏为例. 地球物理学进展. 2025(01): 166-175 .
![]() | |
4. |
郭秀鹏. 基于地质工程一体化压裂参数优化及现场应用——以中原油田东濮老区A区块为例. 石油地质与工程. 2025(02): 1-5 .
![]() | |
5. |
徐洲,孔祥伟,谢昕,王存武,王晨月. 天然裂缝和层理的角度对深煤层水力裂缝扩展的影响. 断块油气田. 2025(03): 493-501 .
![]() | |
6. |
曹炜,马永宁,孟浩,拜杰,张同伍,鲜晟,徐荣利,赵国翔,涂志勇. 庆城页岩油水力压裂试验场大斜度取心井裂缝描述与认识. 中国石油勘探. 2025(02): 133-145 .
![]() | |
7. |
屈雪峰,常睿,何右安,雷启鸿,黄天镜,王高强,关云,李桢. 庆城油田长7段页岩油藏水平井体积压裂渗吸和驱替机理. 新疆石油地质. 2025(03): 344-352 .
![]() | |
8. |
杨静,张献伟,李锦锋,龚嘉顺,张梦雅,杨峰,薛井泉,白峰. 下寺湾油田致密油地质工程一体化压裂技术. 石油化工应用. 2025(05): 15-20 .
![]() | |
9. |
李战奎,吴立伟,郭明宇,徐鲲,马福罡,李文龙. 渤中凹陷深层高压井地质工程一体化技术研究与应用. 石油钻探技术. 2024(02): 194-201 .
![]() | |
10. |
郑健,何永生,汪勇,蔡景顺,唐煊赫,朱海燕. 基于FEM-DFN的页岩气井复杂裂缝扩展与优化——以长宁页岩气藏X1水平井组为例. 断块油气田. 2024(03): 415-423 .
![]() | |
11. |
刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 .
![]() | |
12. |
郑马嘉,郭兴午,伍亚,赵文韬,邓琪,谢维扬,欧志鹏. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破. 中国石油勘探. 2024(03): 58-68 .
![]() | |
13. |
项远铠,张谷畅,承宁,马俊修,张建军,王博. 深层砂砾岩整体压裂矿场试验研究. 断块油气田. 2024(05): 922-929 .
![]() | |
14. |
沈童,卢文涛,郑爱维,王立,常振. 四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法. 天然气勘探与开发. 2024(05): 39-47 .
![]() | |
15. |
刘合,慕立俊,齐银,陈文斌,拜杰,涂志勇. 基于光纤监测的分段压裂多簇均衡性评价与优化建议. 钻采工艺. 2024(06): 1-7 .
![]() | |
16. |
江智强,王治国,李紫莉,韩巧荣,李在顺,何淼,周少伟. 氮气泡沫压裂优化设计与应用实践. 钻采工艺. 2024(06): 76-82 .
![]() | |
17. |
张矿生,慕立俊,陆红军,齐银,薛小佳,拜杰. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识. 钻采工艺. 2024(06): 16-27 .
![]() | |
18. |
张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 .
![]() | |
19. |
刘星,邱建,陈作,张旭东,李双明,齐自立. 基于八叉树网格的页岩压裂复杂缝网面积计算方法. 石油钻探技术. 2024(06): 117-125 .
![]() | |
20. |
马立军,王骁睿,赵倩倩,姬靖皓. 页岩油环保型开发策略实现资源开发和环境保护协调发展. 石油钻采工艺. 2024(05): 635-650 .
![]() | |
21. |
张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 .
![]() |