WU Zhiying, LU Baoping, HU Yafei, JIANG Tingxue. Experimental Study on the Physical Simulation of Dynamic Sand Transport in Multi-Stage Fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106-110. DOI: 10.11911/syztjs.2020093
Citation: WU Zhiying, LU Baoping, HU Yafei, JIANG Tingxue. Experimental Study on the Physical Simulation of Dynamic Sand Transport in Multi-Stage Fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106-110. DOI: 10.11911/syztjs.2020093

Experimental Study on the Physical Simulation of Dynamic Sand Transport in Multi-Stage Fractures

More Information
  • Received Date: January 10, 2020
  • Revised Date: June 22, 2020
  • Available Online: July 07, 2020
  • To study the dynamic sand transportation and distribution patterns of proppant within fractures during hydraulic fracturing, an experimental device simulating sand transport in fracture systems with multi-scale was self-developed. This included carrying out an experimental study on dynamic sand transportation law and proppant height distribution patterns within fractures of different sizes under different frac fluid viscosity, proppant type, pumping flow rate and proppant concentration. The experimental results showed that the viscosity of frac fluid is the most influential factor followed by particle size of the proppant, proppant concentration and flow rate. The higher the viscosity of fracturing fluid, the less proppant settlement, and the lower and the gentler the settled proppant bank profile. This is more obvious in main fractures. The larger the particle size of the proppant, the more the settled proppant, the higher the settled proppant bank profile. It is more obvious in main fractures, too. Similarly, the higher the proppant concentration, the more the settled proppant, and the higher the settled proppant bank profile. This change is even more notable in branched fractures. The higher the flow rate, the slightly less the settled proppant. Further, it is almost the same in branched fractures. The research results will provide a theoretical basis for the optimization of frac fluid, proppant, and fracturing operation parameters as well as a formulating fracturing scheme.

  • [1]
    MICHAELIDES E E. Hydrodynamic force and heat/mass transfer from particles, bubbles, and drop: the Freeman scholar lecture[J]. Journal of Fluids Engineering, 2003, 125(2): 209–238. doi: 10.1115/1.1537258
    [2]
    侯腾飞,张士诚,马新仿,等. 支撑剂沉降规律对页岩气压裂水平井产能的影响[J]. 石油钻采工艺, 2017, 39(5): 638–645.

    HOU Tengfei, ZHANG Shicheng, MA Xinfang, et al. Effect of proppant settlement laws on the productivity of shale-gas horizontal wells after the fracturing[J]. Oil Drilling & Production Technology, 2017, 39(5): 638–645.
    [3]
    温庆志,翟恒立,罗明良,等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率, 2012, 19(6): 104–107. doi: 10.3969/j.issn.1009-9603.2012.06.025

    WEN Qingzhi, ZHAI Hengli, LUO Mingliang, et al. Study on proppant settlement and transport rule in shale gas fracturing[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 104–107. doi: 10.3969/j.issn.1009-9603.2012.06.025
    [4]
    李靓. 压裂缝内支撑剂沉降和运移规律实验研究[D]. 成都: 西南石油大学, 2014.

    LI Liang. Experimental study on proppant settlement and migration in pressure fracture[D]. Chengdu: Southwest Petroleum University, 2014.
    [5]
    温庆志,段晓飞,战永平,等. 支撑剂在复杂缝网中的沉降运移规律研究[J]. 西安石油大学学报(自然科学版), 2016, 31(1): 79–84. doi: 10.3969/j.issn.1673-064X.2016.01.013

    WEN Qingzhi, DUAN Xiaofei, ZHAN Yongping, et al. Study on settlement and migration law of proppant in complex fracture network[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2016, 31(1): 79–84. doi: 10.3969/j.issn.1673-064X.2016.01.013
    [6]
    狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田, 2019, 26(3): 355–359.

    DI Wei. Migration law and placement characteristics of proppant in fractures[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 355–359.
    [7]
    MALHOTRA S, SHARMA M M. Settling of spherical particles in unbounded and confined surfactant-based shear thinning viscoelastic fluids: an experimental study[J]. Chemical Engineering Science, 2012, 84: 646–655. doi: 10.1016/j.ces.2012.09.010
    [8]
    温庆志,胡蓝霄,翟恒立,等. 滑溜水压裂裂缝内砂堤形成规律[J]. 特种油气藏, 2013, 20(3): 137–139.

    WEN Qingzhi, HU Lanxiao, ZHAI Hengli, et al. Formation law of sand dike in fracture by slick water fracturing[J]. Special Oil & Gas Reservoir, 2013, 20(3): 137–139.
    [9]
    周德胜,张争,惠峰,等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺, 2017, 39(4): 499–508.

    ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4): 499–508.
    [10]
    陈勉,葛洪魁,赵金洲,等. 页岩油气高效开发的关键基础理论与挑战[J]. 石油钻探技术, 2015, 43(5): 7–14.

    CHEN Mian, GE Hongkui, ZHAO Jinzhou, et al. The key fundamentals for the efficient exploration of shale oil and gas and its related challenges[J]. Petroleum Drilling Techniques, 2015, 43(5): 7–14.
    [11]
    陈冬,王楠哲,叶智慧,等. 压实与嵌入作用下压裂裂缝导流能力模型建立与影响因素分析[J]. 石油钻探技术, 2018, 46(6): 82–89.

    CHEN Dong, WANG Nanzhe, YE Zhihui, et al. Propped fracture conductivity evolution under a combination of compaction and embedment: establishing a model and analyzing the influencing factors[J]. Petroleum Drilling Techniques, 2018, 46(6): 82–89.
    [12]
    NGAMENI K L, MISKIMINS J L, ABASS H H, et al. Experimental study of proppant transport in horizontal wellbore using fresh water[R]. SPE 184841, 2017.
    [13]
    刘建坤,吴峙颖,吴春方,等. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液, 2019, 36(3): 378–383. doi: 10.3969/j.issn.1001-5620.2019.03.020

    LIU Jiankun, WU Zhiying, WU Chunfang, et al. Experiment study on the mechanisms of sand suspension and settling of proppant in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 378–383. doi: 10.3969/j.issn.1001-5620.2019.03.020
    [14]
    吴春方,刘建坤,蒋廷学,等. 压裂输砂与返排一体化物理模拟实验研究[J]. 特种油气藏, 2019, 26(1): 142–146.

    WU Chunfang, LIU Jiankun, JIANG Tingxue, et al. Integrated physical modeling experiment research on sand transport and backflow in fracturing[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 142–146.
  • Related Articles

    [1]XING Xuesong, YUAN Junliang, LI Zhonghui, SUN Chong, ZHAO Yi. Determination of Formation Fracture Pressure under High Temperature and High Pressure in Deep Water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6): 18-24. DOI: 10.11911/syztjs.2023052
    [2]WU Jiang, LI Yanjun, ZHANG Wandong, YANG Yuhao. Key Drilling Techniques of HTHP Horizontal Wells in Mid-Deep Strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63-69. DOI: 10.11911/syztjs.2019112
    [3]ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
    [4]HAN Cheng, HUANG Kaiwen, LUO Ming, LIU Xianyu, DEND Wenbiao. Plugging Technology for HTHP Wells in the Yingqiong Basin of the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 15-20. DOI: 10.11911/syztjs.2019081
    [5]JU Ran, GUAN Zhichuan, HUANG Yi, LUO Ming, LI Wentuo, DENG Wenbiao. Optimization of the Casing-Wellbore Gap in Complex Strata of the Ying-Qiong Basin, South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 32-36. DOI: 10.11911/syztjs.2019003
    [6]LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026
    [7]LUO Ming, WU Jiang, CHEN Haodong, XIAO Ping. Ultra-High Temperature High Pressure Drilling Technology for Narrow Safety Density Window Strata in the Western South China[J]. Petroleum Drilling Techniques, 2019, 47(1): 8-12. DOI: 10.11911/syztjs.2019024
    [8]Sun Baojiang, Zhang Zhennan. Challenges and Countermeasures for the Drilling and Completion of Deepwater Wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1-7. DOI: 10.11911/syztjs.201504001
    [9]Gu Chunwei, Luo Ming, Xu Yilong, Wu Jiang. Application of Tieback outside Casing in Horizontal Wells Drilled on Semi-Submersible Platforms[J]. Petroleum Drilling Techniques, 2014, 42(1): 46-49. DOI: 10.3969/j.issn.1001-0890.2014.01.009
    [10]Liu Zhengli, Ye Jihua, Tian Ruirui, Yan De. Adaptability of Underwater Tamping for Deepwater Drilling Conductor Installation in South China Sea[J]. Petroleum Drilling Techniques, 2014, 42(1): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.01.008
  • Cited by

    Periodical cited type(15)

    1. 黄涛,钟颖,牟秋杭,严耀辉,李建林,张浩. 复杂缝网压裂二氧化碳悬浮支撑剂技术及悬砂性能. 油田化学. 2025(01): 38-43+51 .
    2. 王迪东,曹晶. 一步水热改性石英砂支撑剂及性能研究. 非金属矿. 2024(03): 5-9 .
    3. 张龙胜,王维恒. 双壳型覆膜支撑剂DSCP的研制及现场试验. 石油钻探技术. 2023(01): 91-97 . 本站查看
    4. 张敬春,任洪达,俞天喜,尹剑宇,周健,周洪涛. 压裂支撑剂研究与应用进展. 新疆石油天然气. 2023(01): 27-34 .
    5. 陈思源,刘浩,金衍,史爱萍,徐泉. 压裂支撑剂发展综述与展望. 石油科学通报. 2023(03): 330-346 .
    6. 任洪达,董景锋,高靓,刘凯新,张敬春,尹淑丽. 新疆油田玛湖砂岩储层自悬浮支撑剂现场试验. 油气藏评价与开发. 2023(04): 513-518 .
    7. 刘又铭,熊廷松,代安安,丁富寿,刘光杰. 压裂覆膜石英砂沉降机理研究及压裂施工排量优化. 石油石化节能. 2022(01): 47-50+11 .
    8. 梁莹. 自悬浮支撑剂研究进展及应用现状. 油气井测试. 2022(01): 47-51 .
    9. 毛峥,李亭,刘德华,杨琦. 水力压裂支撑剂应用现状与研究进展. 应用化工. 2022(02): 525-530+537 .
    10. 王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验. 油气藏评价与开发. 2022(04): 684-689 .
    11. 黄博,雷林,汤文佳,徐宁蔚,熊炜. 自悬浮支撑剂清水携砂压裂增产机理研究. 油气藏评价与开发. 2021(03): 459-464 .
    12. 谭晓华,丁磊,胥伟冲,瞿霜,温中林. 覆膜支撑剂导气阻水效果可视化试验研究. 石油钻探技术. 2021(03): 117-123 . 本站查看
    13. 王兴文,何颂根,林立世,栗铁峰,王峻峰. 威荣区块深层页岩气井体积压裂技术. 断块油气田. 2021(06): 745-749 .
    14. 白云云,宋本凯. 煤层气水力压裂工艺新进展. 榆林学院学报. 2019(02): 13-16 .
    15. 田中原,卢祥国,曹伟佳,陈清,闫冬. 自悬浮与普通支撑剂裂缝导流能力实验研究. 石油化工高等学校学报. 2019(03): 33-38 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (653) PDF downloads (74) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return