Zhang Ligang, Tao Xin, Yan Tie, Jin Ming, Wang Tao. Horizontal Bedding Shale in-Situ Stress Calculation Inverted from Adjacent Beds[J]. Petroleum Drilling Techniques, 2015, 43(5): 26-30. DOI: 10.11911/syztjs.201505005
Citation: Zhang Ligang, Tao Xin, Yan Tie, Jin Ming, Wang Tao. Horizontal Bedding Shale in-Situ Stress Calculation Inverted from Adjacent Beds[J]. Petroleum Drilling Techniques, 2015, 43(5): 26-30. DOI: 10.11911/syztjs.201505005

Horizontal Bedding Shale in-Situ Stress Calculation Inverted from Adjacent Beds

More Information
  • Received Date: July 14, 2015
  • Revised Date: September 08, 2015
  • Due to rock friability and the strong difference of rock mechanical characteristics between parallel and vertical bedding directions of the horizontal bedding shale, existing in-situ stress calculation methods could not meet the accuracy requirements and it is difficult to perform laboratory in-situ tests on the cores. Therefore, shale in-situ stress evaluation methods were studied in this paper so as to provide the effective guidance for well drilling and fracturing design. The shale elasticity parameters in different bedding directions were obtained by means of uniaxial compression tests, and the transversely isotropic characteristics were presented obviously. Based on the constitutive relation of transversely isotropic materials, the model for horizontal bedding shale in-situ stress inverted from its adjacent sand-shale in-situ stress was established, after it was assumed that there was no relative displacement between the formations in the process of the deposition and later tectonic movement. An analysis was conducted on sensitivity factors and influence laws. It is shown that the shale in-situ stress was controlled by its own elastic parameters and the elastic modulus, Poisson’s ratio and in-situ stress value of its adjacent sand-shale beds. The two horizontal in-situ stresses calculated with this method were higher than those obtained with the Terzaghi and Newberry models, and they were between the upper and lower limits of Huang Rongzun model.The research results in this paper provided a new method for evaluating the in-situ stress of horizontal bedding shale.
  • [1]
    邹才能,董大忠,王社教,等.中国页岩气形成机制,地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653. Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
    [2]
    袁俊亮,邓金根,蔚宝华,等.页岩气藏水平井井壁稳定性研究[J].天然气工业,2012,32(9):66-70. Yuan Junliang,Deng Jingen,Yu Baohua,et al.Wellbore stability of horizontal wells in shale gas reservoirs[J].Natural Gas Industry,2012,32(9):66-70.
    [3]
    张斌,杨佳玲,解琪,等.地应力分析在鄂西渝东地区页岩气开发中的应用[J].天然气勘探与开发,2012,35(12):33-37. Zhang Bin,Yang Jialing,Xie Qi,et al.Application of ground stress analysis to shale gas development in Western Hubei and Eastern Chongqing Region[J].Natural Gas Exploration Development,2012,35(12):33-37.
    [4]
    Matthews W R,Kelly J.How to predict formation pressure and fracture gradient[J].Oil and Gas,1967,65(8):92-106.
    [5]
    Anderson R A,Ingram D S,Zanier A M.Determining fracture pressure gradient from well logs[J].JPT,1973,25(11):1259-1268.
    [6]
    黄荣樽.地层破裂压力预测模式的探讨[J].华东石油学院学报,1984,8(4):335-347. Huang Rongzun.A model for prediction formation fracture pressure[J].Journal of Huadong Petroleum Institute,1984,8(4):335-347.
    [7]
    王倩,王鹏,项德贵,等.页岩力学参数各向异性研究[J].天然气工业,2012,32(12):62-66. Wang Qian,Wang Peng,Xiang Degui,et al.Anisotropic property of mechanical parameters of shales[J].Natural Gas Industry,2012,32(12):62-66.
    [8]
    Sayers C M.Seismic anisotropy of shales[J].Geophysical Prospecting,2005,53(5):667-676.
    [9]
    李庆辉,陈勉,金衍,等.页岩气储层岩石力学特性及脆性评价[J].石油钻探技术,2012,40(4):17-22. Li Qinghui,Chen Mian,Jin Yan,et al.Rock mechanical properties and brittleness evaluation of shale gas reservoir[J].Petroleum Drilling Techniques,2012,40(4):17-22.
    [10]
    邓金根,陈峥嵘,耿亚楠,等.页岩储层地应力预测模型的建立和求解[J].中国石油大学学报:自然科学版,2013,37(6):59-64. Deng Jingen,Chen Zhengrong,Geng Yanan,et al.Prediction model for in-situ formation stress in shale reservoirs[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(6):59-64.
    [11]
    马天寿,陈平.层理页岩水平井井周剪切失稳区域预测方法[J].石油钻探技术,2014,42(5):27-36. Ma Tianshou,Chen Ping.Prediction method of shear instability region around the bore hole for horizontal wells in bedding shale[J].Petroleum Drilling Techniques,2014,42(5): 27-36.
    [12]
    陈强,朱宝龙,胡厚田.岩石Kaiser 效应测定地应力场的试验研究[J].岩石力学与工程学报,2006,25(7):1370-1376. Chen Qiang,Zhu Baolong,Hu Houtian.Experimental research on measurement of in-situ stress field by Kaiser effect[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1370-1376.
  • Related Articles

    [1]LIU Yaowen, BIAN Xiaobing, LI Shuangming, JIANG Tingxue, ZHANG Chi. An Evaluation Method of Shale Fracability Based on Stress Inversion[J]. Petroleum Drilling Techniques, 2022, 50(1): 82-88. DOI: 10.11911/syztjs.2021098
    [2]JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086
    [3]HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
    [4]Lin Yongxue, Gao Shuyang, Zeng Yijin. Evaluation and Analysis of Rock Strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20-25. DOI: 10.11911/syztjs.201505004
    [5]Xiong Jian, Liu Xiangjun, Liang Lixi. Isothermal Adsorption Model of Supercritical Methane in Shale[J]. Petroleum Drilling Techniques, 2015, 43(3): 96-102. DOI: 10.11911/syztjs.201503018
    [6]Zeng Qingdong, Yao Jun. Experiment of Shale Failure Mechanism Based on Particle Flow Theory[J]. Petroleum Drilling Techniques, 2015, 43(1): 33-37. DOI: 10.11911/syztjs.201501006
    [7]Jiang Tingxue, Bian Xiaobing, Su Yuan, Liu Shuanglian, Wei Ran. A New Method for Evaluating Shale Fracability Index and Its Application[J]. Petroleum Drilling Techniques, 2014, 42(5): 16-20. DOI: 10.11911/syztjs.201405003
    [8]Yang Henglin, Shen Ruichen, Fu Li. Composition and Mechanical Properties of Gas Shale[J]. Petroleum Drilling Techniques, 2013, 41(5): 31-35. DOI: 10.3969/j.issn.1001-0890.2013.05.006
    [9]Zhang Xinhua, Zou Xiaochun, Zhao Hongyan, Li Fang, Qin Liming. A New Method of Evaluation Shale Brittleness Using X-ray Fluorescence Element Logging Data[J]. Petroleum Drilling Techniques, 2012, 40(5): 92-95. DOI: 10.3969/j.issn.1001-0890.2012.05.020
    [10]Shi Bingzhong, Xia Bairu, Gao Shuyang, Tang Wenquan, Xu Jiang. Development and Performance Evaluation of Shale Self-Absorption Hydration Inhibitor[J]. Petroleum Drilling Techniques, 2012, 40(5): 45-49. DOI: 10.3969/j.issn.1001-0890.2012.05.010
  • Cited by

    Periodical cited type(5)

    1. 尚福华,王玮卿,曹茂俊. 基于改进BP神经网络的页岩地应力预测模型. 计算机技术与发展. 2021(07): 164-170 .
    2. 包汉勇,梁榜. 页岩地应力分布规律及其影响因素——以涪陵页岩气田五峰—龙马溪组一段为例. 江汉石油职工大学学报. 2021(05): 1-4 .
    3. 康洪全,李明刚,贾怀存,杨海风,孟金落. 大型控盆边界正断层活动性评价方法及应用. 断块油气田. 2017(03): 307-310 .
    4. 胡耀方,田中兰,杨恒林,李军,张弘,付盼,吴志勇. 昭通页岩储层非均质地应力场数值模拟. 天然气勘探与开发. 2017(04): 44-51 .
    5. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (3406) PDF downloads (3218) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return