Citation: | LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046 |
[1] |
中华人民共和国国务院新闻办公室. 中国的北极政策[EB/OL].(2018-01-26)[2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
The state council information office of the People’s Republic of China.China’s Arctic policy[EB/OL]. (2018-01-26) [2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
|
[2] |
HAMILTON J M. The challenges of deep-water Arctic development[J]. International Journal of Offshore and Polar Engineering, 2011, 21(4): 241–247.
|
[3] |
余本善, 孙乃达.全球待发现油气资源分布及启示[J].中国矿业, 2015, 24(增刊1): 22-27.
YU Benshan, SUN Naida. The distribution of global undiscovered hydrocarbon resources and enlightenment[J]. China Mining Magazine, 2015, 24(supplement 1): 22-27.
|
[4] |
李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015
LI Haowu, TONG Xiaoguang. Exploration potential analysis of oil and gas resources in Arctic regions[J]. China Petroleum Exploration, 2010, 15(3): 73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015
|
[5] |
崔白露,王义桅. “一带一路”框架下的北极国际合作:逻辑与模式[J]. 同济大学学报(社会科学版),2018,29(2):48–58.
CUI Bailu, WANG Yiwei. International cooperation on the Arctic under the Belt and Road Initiative: logics and models[J]. Journal of Tongji University (Social Science Section), 2018, 29(2): 48–58.
|
[6] |
WHITEMAN G, HOPE C, WADHAMS P. Climate science: vast costs of Arctic change[J]. Nature, 2013, 499(7459): 401–403. doi: 10.1038/499401a
|
[7] |
路保平, 李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营: 中国石油大学出版社, 2009.
LU Baoping, LI Guohua. Russia Sakhalin offshore drilling EPC project[M]. Dongying: China University of Petroleum Press, 2009.
|
[8] |
卢景美,邵滋军,房殿勇,等. 北极圈油气资源潜力分析[J]. 资源与产业,2010,12(4):29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007
LU Jingmei, SHAO Zijun, FANG Dianyong, et al. Analysis of oil-gas resources potential in the Arctic circle[J]. Resources & Industries, 2010, 12(4): 29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007
|
[9] |
郭晓琼. 中俄经贸合作新进展及未来发展趋势[J]. 俄罗斯学刊,2016(3):10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002
GUO Xiaoqiong. New progress in economic and trade cooperation between China and Russia and the future development trend[J]. Academic Journal of Russian Studies, 2016(3): 10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002
|
[10] |
WINKLER M M. Frontier Arctic offshore exploration drilling business challenge[R]. OTC 29144, 2018.
|
[11] |
Eurasia Group. Opportunities and challenges for Arctic oil and gas development[R]. OTC 24586, 2014.
|
[12] |
SOUTHAM A L. the impact of non-technical risks on oil and gas activities in Alaska’s Arctic[R]. SPE 166811, 2013.
|
[13] |
FEBBO E, PAYNE K, REEP B. Technology and innovation for environmental monitoring on Alaska’s North Slope[R]. SPE 184471, 2017.
|
[14] |
SMITS C C, HUBER E. A social license to operate in the Arctic: exploring the challenges and opportunities for offshore oil and gas a ctivities in Greenland[R]. SPE 179343, 2016.
|
[15] |
CHOU Q, MURTAZA M, MAMMADOV E, et al. Arctic drilling hazard identification relating to salt tectonics[R]. OTC 27396, 2016.
|
[16] |
党学博,李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设,2016,42(4):1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001
DANG Xuebo, LI Huaiyin. Offshore engineering modes and key technologies in Arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001
|
[17] |
孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
SUN Baojiang. Progress and prospect of key equipment for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
|
[18] |
LI Huaiyin, DANG Xuebo, ZHU Kai. Review and outlook on Arctic offshore facilities & technologies[R]. OTC 25541, 2015.
|
[19] |
杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7.
YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
|
[20] |
FENG Wen, JAMES B, CHEUNG T O, et al. Study on the material properties of aged steel exposed to the Arctic environment[R]. OTC 29161, 2018.
|
[21] |
NEAL P, FELIPE M, JOHN E, et al. Shallow water subsea drilling and production structure to resist sand and ice keel intrusion in Arctic environments[R]. OTC 27440, 2016.
|
[22] |
JI Guodong, WANG Haige, WANG Lingbi, et al. Current situation and development trend of Arctic drilling equipment[R]. ISOPE-I-13-184, 2013.
|
[23] |
UTVIK T I, JAHRE-NILSEN C. The importance of early identification of safety and sustainability related risks in Arctic oil and gas operations[R]. SPE 179325, 2016.
|
[24] |
TORSÆTER M, CERASI P. Mud-weight control during Arctic drilling operations[R]. OTC 25481, 2015.
|
[25] |
XIE Jueren, MATTHEWS C M. Methodology to assess thaw subsidence impacts on the design and integrity of oil and gas wells in Arctic regions[R]. SPE 149740, 2011.
|
[26] |
ANDREY B, GURBAN V, STANISLAV K, et al. Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of Western Siberia (Russian Federation)[R]. OTC 24617, 2014.
|
[27] |
周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54.
ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geology Frontiers, 2012, 28(1): 51–54.
|
[28] |
李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095
LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
|
[29] |
李鸿涛,陶平安,王志忠,等. ZJ40/2250DBG低温轨道钻井装备的研制[J]. 石油机械,2014,42(11):64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016
LI Hongtao, TAO Pingan, WANG Zhizhong, et al. Development of ZJ40 /2250DBG low-temperature track drilling rig[J]. China Petroleum Machinery, 2014, 42(11): 64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016
|
[30] |
KAMATOV K. Hybrid drill bit for horizontal drilling in highly interbedded formations of timano-pechora Arctic fields[R]. SPE 166841, 2013.
|
[31] |
高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi: 10.11911/syztjs.2019069
GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi: 10.11911/syztjs.2019069
|
[32] |
黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法[J]. 石油机械,2020,48(4):1–8.
HUANG Wenjun, SHI Xiaolei, GAO Deli. Piecewise optimal design method of tubular strings based on extended-reach drilling limits[J]. China Petroleum Machinery, 2020, 48(4): 1–8.
|
[33] |
CHEN Wei, SHEN Yuelin, CHEN Rongbing, et al. Simulating drillstring dynamics motion and post-buckling state with advanced transient dynamics model[J]. SPE Drilling & Completion, 2021: 1–15. doi: https://doi.org/10.2118/199557-PA
|
[34] |
BUI B T, TUTUNCU A N. A generalized rheological model for drilling fluids with cubic splines[J]. SPE Drilling & Completion, 2015, 31(1): 26–39.
|
[35] |
MAHMOUD O, NASR-EL-DIN H A, VRYZAS Z, et al. Effect of ferric oxide nanoparticles on the properties of filter cake formed by calcium bentonite-based drilling muds[J]. SPE Drilling & Completion, 2018, 33(4): 363–376.
|
[36] |
刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春: 吉林大学, 2016.
LIU Huanan. Research on low temperature foam flushing fluid used in frozen soil layer drilling[D]. Changchun: Jilin University, 2016.
|
[37] |
WINKLER M M, JAHRE-NILSEN C. Arctic response technology JIP key achievements and final deliverables[R]. OTC 29120, 2018.
|
[38] |
RAKHMANGULOV R, EVDOKIMOVA I, DOBROKHLEB P, et al. Entering the Arctic gate: high end drilling at the high latitude[R]. SPE 181922, 2016.
|
[39] |
HASLING J F. Predicting the timing and duration of Arctic sea ice and its implications on future drilling seasons in the Chukchi Sea and Beaufort Sea[R]. OTC 27443, 2016.
|
[40] |
EFIMOV Y O, KORNISHIN K A, SOCHNEV O Y, et al. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea[R]. ISOPE-I-20-1272, 2020.
|
[41] |
GUZENKO R B, MIRONOV Y U, KHARITONOV V V, et al. Complex study of large ice features and assessment of morphometric, physical-strength and age characteristics of a composite ice ridge[R]. ISOPE-I-20-1260, 2020.
|
[42] |
ISRAEL R, McCRAE D, SPERRY N, et al. Delivering drilling automation II: novel automation platform and wired drill pipe deployed on Arctic drilling operations[R]. SPE 191574, 2018.
|
[43] |
LAI S W, NG J, EDDY A, et al. Large-scale deployment of a closed-loop drilling optimization system: implementation and field results[J]. SPE Drilling and Completion, 2021, 36(1): 47–62. doi: 10.2118/199601-PA
|
[44] |
WILSON A. Automated operations and wired drillpipe benefit Arctic drilling[J]. Journal of Petroleum Technology, 2019, 71(2): 62–64. doi: 10.2118/0219-0062-JPT
|
[45] |
GOVINDU A, AHMED R, SHAH S, et al. The effect of inclination on the stability of foam systems in drilling and well operations[J]. SPE Drilling & Completion, 2020: 1–18. doi: https://doi.org/10.2118/199821-PA
|
[46] |
KINIK K, GUMUS F, OSAYANDE N. Automated dynamic well control with managed-pressure drilling: a case study and simulation analysis[J]. SPE Drilling & Completion, 2015, 30(2): 110–118.
|
[47] |
STAVE R, FOSSLI B, ENDRESEN C, et al. Exploration drilling with riserless dual gradient technology in Arctic waters[R]. OTC 24588, 2014.
|
1. |
王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法. 石油钻探技术. 2020(03): 29-34 .
![]() | |
2. |
刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 .
![]() |