LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046
Citation: LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046

Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea

More Information
  • Received Date: March 03, 2021
  • Available Online: May 09, 2021
  • The Arctic area is rich in oil and gas resources. However, its geological and environmental factors such as low temperature, shallow hazards, permafrost and extreme temperature change in wellbore bring many challenges to drilling operation. For this reason, during the "Thirteenth Five-Year Plan" period, Sinopec took safety, environmental protection and efficient drilling as its overall goals and focused on solving the problem of "cold" adaptability of drilling equipments and tools, drilling technologies and measures, wellbore working fluids. Research was performed on key technologies regarding drilling hazard assessment and control, environmental protection, key drilling equipments and tools, drilling techniques, wellbore working fluids, etc. Impressive progresses were made in the quantitative risk assessment method for hazards to shallow gas and gas hydrate formations, the orbital drilling rigs and tools utilized at −50 °C, stability evaluation and borehole stability control in permafrost, and engineering technologies related to drilling fluid and cement slurry under low temperature conditions. As a result, the key technology system of drilling in the Arctic sea was preliminarily developed. As the Arctic oil and gas development enters higher latitudes and thicker permafrost regions on land, and the oceans will advance to deeper waters, perennial ice or thicker ice floes, drilling in Arctic sea will face greater challenges and requires further progress. Therefore, it is necessary to build a complete drilling and completion technology system in the Arctic sea by improving the theories and methods and developing new key equipments and tools. With the system, the demands of efficient exploration and development of oil and gas reservoirs in the Arctic region can be realized, thereby enhancing the economic benefits and core competitiveness of China’s oil companies in international cooperation projects of oil and gas development in this area.
  • [1]
    中华人民共和国国务院新闻办公室. 中国的北极政策[EB/OL].(2018-01-26)[2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.

    The state council information office of the People’s Republic of China.China’s Arctic policy[EB/OL]. (2018-01-26) [2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
    [2]
    HAMILTON J M. The challenges of deep-water Arctic development[J]. International Journal of Offshore and Polar Engineering, 2011, 21(4): 241–247.
    [3]
    余本善, 孙乃达.全球待发现油气资源分布及启示[J].中国矿业, 2015, 24(增刊1): 22-27.

    YU Benshan, SUN Naida. The distribution of global undiscovered hydrocarbon resources and enlightenment[J]. China Mining Magazine, 2015, 24(supplement 1): 22-27.
    [4]
    李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015

    LI Haowu, TONG Xiaoguang. Exploration potential analysis of oil and gas resources in Arctic regions[J]. China Petroleum Exploration, 2010, 15(3): 73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015
    [5]
    崔白露,王义桅. “一带一路”框架下的北极国际合作:逻辑与模式[J]. 同济大学学报(社会科学版),2018,29(2):48–58.

    CUI Bailu, WANG Yiwei. International cooperation on the Arctic under the Belt and Road Initiative: logics and models[J]. Journal of Tongji University (Social Science Section), 2018, 29(2): 48–58.
    [6]
    WHITEMAN G, HOPE C, WADHAMS P. Climate science: vast costs of Arctic change[J]. Nature, 2013, 499(7459): 401–403. doi: 10.1038/499401a
    [7]
    路保平, 李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营: 中国石油大学出版社, 2009.

    LU Baoping, LI Guohua. Russia Sakhalin offshore drilling EPC project[M]. Dongying: China University of Petroleum Press, 2009.
    [8]
    卢景美,邵滋军,房殿勇,等. 北极圈油气资源潜力分析[J]. 资源与产业,2010,12(4):29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007

    LU Jingmei, SHAO Zijun, FANG Dianyong, et al. Analysis of oil-gas resources potential in the Arctic circle[J]. Resources & Industries, 2010, 12(4): 29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007
    [9]
    郭晓琼. 中俄经贸合作新进展及未来发展趋势[J]. 俄罗斯学刊,2016(3):10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002

    GUO Xiaoqiong. New progress in economic and trade cooperation between China and Russia and the future development trend[J]. Academic Journal of Russian Studies, 2016(3): 10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002
    [10]
    WINKLER M M. Frontier Arctic offshore exploration drilling business challenge[R]. OTC 29144, 2018.
    [11]
    Eurasia Group. Opportunities and challenges for Arctic oil and gas development[R]. OTC 24586, 2014.
    [12]
    SOUTHAM A L. the impact of non-technical risks on oil and gas activities in Alaska’s Arctic[R]. SPE 166811, 2013.
    [13]
    FEBBO E, PAYNE K, REEP B. Technology and innovation for environmental monitoring on Alaska’s North Slope[R]. SPE 184471, 2017.
    [14]
    SMITS C C, HUBER E. A social license to operate in the Arctic: exploring the challenges and opportunities for offshore oil and gas a ctivities in Greenland[R]. SPE 179343, 2016.
    [15]
    CHOU Q, MURTAZA M, MAMMADOV E, et al. Arctic drilling hazard identification relating to salt tectonics[R]. OTC 27396, 2016.
    [16]
    党学博,李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设,2016,42(4):1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001

    DANG Xuebo, LI Huaiyin. Offshore engineering modes and key technologies in Arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001
    [17]
    孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002

    SUN Baojiang. Progress and prospect of key equipment for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
    [18]
    LI Huaiyin, DANG Xuebo, ZHU Kai. Review and outlook on Arctic offshore facilities & technologies[R]. OTC 25541, 2015.
    [19]
    杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7.

    YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
    [20]
    FENG Wen, JAMES B, CHEUNG T O, et al. Study on the material properties of aged steel exposed to the Arctic environment[R]. OTC 29161, 2018.
    [21]
    NEAL P, FELIPE M, JOHN E, et al. Shallow water subsea drilling and production structure to resist sand and ice keel intrusion in Arctic environments[R]. OTC 27440, 2016.
    [22]
    JI Guodong, WANG Haige, WANG Lingbi, et al. Current situation and development trend of Arctic drilling equipment[R]. ISOPE-I-13-184, 2013.
    [23]
    UTVIK T I, JAHRE-NILSEN C. The importance of early identification of safety and sustainability related risks in Arctic oil and gas operations[R]. SPE 179325, 2016.
    [24]
    TORSÆTER M, CERASI P. Mud-weight control during Arctic drilling operations[R]. OTC 25481, 2015.
    [25]
    XIE Jueren, MATTHEWS C M. Methodology to assess thaw subsidence impacts on the design and integrity of oil and gas wells in Arctic regions[R]. SPE 149740, 2011.
    [26]
    ANDREY B, GURBAN V, STANISLAV K, et al. Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of Western Siberia (Russian Federation)[R]. OTC 24617, 2014.
    [27]
    周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54.

    ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geology Frontiers, 2012, 28(1): 51–54.
    [28]
    李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
    [29]
    李鸿涛,陶平安,王志忠,等. ZJ40/2250DBG低温轨道钻井装备的研制[J]. 石油机械,2014,42(11):64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016

    LI Hongtao, TAO Pingan, WANG Zhizhong, et al. Development of ZJ40 /2250DBG low-temperature track drilling rig[J]. China Petroleum Machinery, 2014, 42(11): 64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016
    [30]
    KAMATOV K. Hybrid drill bit for horizontal drilling in highly interbedded formations of timano-pechora Arctic fields[R]. SPE 166841, 2013.
    [31]
    高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi: 10.11911/syztjs.2019069

    GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi: 10.11911/syztjs.2019069
    [32]
    黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法[J]. 石油机械,2020,48(4):1–8.

    HUANG Wenjun, SHI Xiaolei, GAO Deli. Piecewise optimal design method of tubular strings based on extended-reach drilling limits[J]. China Petroleum Machinery, 2020, 48(4): 1–8.
    [33]
    CHEN Wei, SHEN Yuelin, CHEN Rongbing, et al. Simulating drillstring dynamics motion and post-buckling state with advanced transient dynamics model[J]. SPE Drilling & Completion, 2021: 1–15. doi: https://doi.org/10.2118/199557-PA
    [34]
    BUI B T, TUTUNCU A N. A generalized rheological model for drilling fluids with cubic splines[J]. SPE Drilling & Completion, 2015, 31(1): 26–39.
    [35]
    MAHMOUD O, NASR-EL-DIN H A, VRYZAS Z, et al. Effect of ferric oxide nanoparticles on the properties of filter cake formed by calcium bentonite-based drilling muds[J]. SPE Drilling & Completion, 2018, 33(4): 363–376.
    [36]
    刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春: 吉林大学, 2016.

    LIU Huanan. Research on low temperature foam flushing fluid used in frozen soil layer drilling[D]. Changchun: Jilin University, 2016.
    [37]
    WINKLER M M, JAHRE-NILSEN C. Arctic response technology JIP key achievements and final deliverables[R]. OTC 29120, 2018.
    [38]
    RAKHMANGULOV R, EVDOKIMOVA I, DOBROKHLEB P, et al. Entering the Arctic gate: high end drilling at the high latitude[R]. SPE 181922, 2016.
    [39]
    HASLING J F. Predicting the timing and duration of Arctic sea ice and its implications on future drilling seasons in the Chukchi Sea and Beaufort Sea[R]. OTC 27443, 2016.
    [40]
    EFIMOV Y O, KORNISHIN K A, SOCHNEV O Y, et al. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea[R]. ISOPE-I-20-1272, 2020.
    [41]
    GUZENKO R B, MIRONOV Y U, KHARITONOV V V, et al. Complex study of large ice features and assessment of morphometric, physical-strength and age characteristics of a composite ice ridge[R]. ISOPE-I-20-1260, 2020.
    [42]
    ISRAEL R, McCRAE D, SPERRY N, et al. Delivering drilling automation II: novel automation platform and wired drill pipe deployed on Arctic drilling operations[R]. SPE 191574, 2018.
    [43]
    LAI S W, NG J, EDDY A, et al. Large-scale deployment of a closed-loop drilling optimization system: implementation and field results[J]. SPE Drilling and Completion, 2021, 36(1): 47–62. doi: 10.2118/199601-PA
    [44]
    WILSON A. Automated operations and wired drillpipe benefit Arctic drilling[J]. Journal of Petroleum Technology, 2019, 71(2): 62–64. doi: 10.2118/0219-0062-JPT
    [45]
    GOVINDU A, AHMED R, SHAH S, et al. The effect of inclination on the stability of foam systems in drilling and well operations[J]. SPE Drilling & Completion, 2020: 1–18. doi: https://doi.org/10.2118/199821-PA
    [46]
    KINIK K, GUMUS F, OSAYANDE N. Automated dynamic well control with managed-pressure drilling: a case study and simulation analysis[J]. SPE Drilling & Completion, 2015, 30(2): 110–118.
    [47]
    STAVE R, FOSSLI B, ENDRESEN C, et al. Exploration drilling with riserless dual gradient technology in Arctic waters[R]. OTC 24588, 2014.
  • Related Articles

    [1]YUAN Jianqiang. New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. DOI: 10.11911/syztjs.2023030
    [2]JIANG Zhenghua, SUN Gang, CHEN Shikui, LI Boyao, DONG Hongye. Key Drilling Technologies for Horizontal Wells with Ultra-Long Horizontal Sections in Nanchuan Shale Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(5): 20-26. DOI: 10.11911/syztjs.2022045
    [3]SUN Huan, ZHU Mingming, ZHANG Qin, SHI Chongdong, WANG Qingchen, QU Yanping. Safe Drilling and Completion Technologies for Ultra-Long Horizontal Section of Tight Gas Horizontal Wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14-19. DOI: 10.11911/syztjs.2022095
    [4]SUN Huan, ZHU Mingming, WANG Weiliang, LI Zhijun, CHEN Ning, LIU Bin. Lost Circulation Prevention and Plugging Technologies for the Ultra-Long Horizontal Section of the Horizontal Shale Oil Well Hua H90-3 in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 16-21. DOI: 10.11911/syztjs.2022004
    [5]SHI Peiming, NI Huafeng, SHI Chongdong, WANG Xuefeng, WANG Wanqing, QU Yanping. Key Technologies for Drilling and Completing Horizontal Wells with Ultra-Long Horizontal Sections in the Sulige Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13-21. DOI: 10.11911/syztjs.2021056
    [6]SU Liangyin, CHANG Du, YANG Haien, DUAN Penghui, XUE Xiaojia, BAI Jianwen. Segmented Multi-Cluster Fracturing Technology for Sidetrack Horizontal Well with Slim Holes in Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 94-98. DOI: 10.11911/syztjs.2020112
    [7]LI Yunfeng, PAN Junying, ZHOU Yan, ZHU Kuanliang, WANG Zaiming. Key Technologies for Drilling and Completing Shallow Slim Hole Sidetracking Horizontal Wells in the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(6): 8-14. DOI: 10.11911/syztjs.2020090
    [8]WANG Jianlong, FENG Guanxiong, LIU Xuesong, GUO Rui, GAO Xuesheng, HUO Yang. Key Technology for Drilling and Completion of Shale Gas Horizontal Wells with Ultra-Long Horizontal Sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9-14. DOI: 10.11911/syztjs.2020086
    [9]HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. DOI: 10.11911/syztjs.2020050
    [10]LIU Weirong, NI Huafeng, WANG Xuefeng, SHI Zhongyuan, TAN Xuebin, WANG Qingchen. Shale Oil Horizontal Drilling Technology with Super-Long Horizontal Laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9-14. DOI: 10.11911/syztjs.2020029
  • Cited by

    Periodical cited type(2)

    1. 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法. 石油钻探技术. 2020(03): 29-34 . 本站查看
    2. 刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (724) PDF downloads (159) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return