SHI Peiming, NI Huafeng, SHI Chongdong, WANG Xuefeng, WANG Wanqing, QU Yanping. Key Technologies for Drilling and Completing Horizontal Wells with Ultra-Long Horizontal Sections in the Sulige Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13-21. DOI: 10.11911/syztjs.2021056
Citation: SHI Peiming, NI Huafeng, SHI Chongdong, WANG Xuefeng, WANG Wanqing, QU Yanping. Key Technologies for Drilling and Completing Horizontal Wells with Ultra-Long Horizontal Sections in the Sulige Tight Gas Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13-21. DOI: 10.11911/syztjs.2021056

Key Technologies for Drilling and Completing Horizontal Wells with Ultra-Long Horizontal Sections in the Sulige Tight Gas Reservoirs

More Information
  • Received Date: October 14, 2020
  • Revised Date: October 17, 2021
  • Available Online: October 26, 2021
  • The drilling and completion of horizontal wells with ultra-long horizontal sections in the tight gas reservoirs of Sulige Gas Field is subject to problems such as high circulating pump pressure, large friction torque, low rates of penetration (ROP), difficult borehole cleaning, and difficulties in running the completion casing string. In response, the technical difficulties in the drilling and completion of such wells were analyzed. Research was conducted on technologies such as optimized allocation of high-efficiency drilling tools and equipments, borehole trajectory design and control, horizontal section drilling acceleration and cleaning, rotary steering system (RSS) drilling, strong inhibition and lubrication water-base drilling fluid, and “rotary guide shoe + casing” floating running, etc. The key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs were developed and applied in 2 wells with an average well depth of 7 027 m and an average horizontal section length of 3 719.5 m. The drilling cycle was 50.93 d, which meant that the proposed technologies achieved a favorable effect. Between the two wells, the Well Jing50-26H1, with a total depth (TD) of 7 388 m and a horizontal section length of 4 118 m, established the records as the deepest well in Changqing Oilfield and the longest horizontal section of onshore oil and gas wells in China at that time. The research and application show that the key technologies can provide technical support for the efficient exploration and development of the Sulige tight gas reservoirs and a reference for safe and efficient drilling and completion of horizontal wells with ultra-long horizontal sections in tight gas fields in China.
  • [1]
    史配铭,薛让平,王学枫,等. 苏里格气田致密气藏水平井优快钻井技术[J]. 石油钻探技术,2020,48(5):27–33. doi: 10.11911/syztjs.2020083

    SHI Peiming, XUE Rangping, WANG Xuefeng, et al. Optimized fast drilling technology for horizontal wells in the tight gas reservoirs in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 27–33. doi: 10.11911/syztjs.2020083
    [2]
    韩来聚,牛洪波,窦玉玲. 胜利低渗油田长水平段水平井钻井关键技术[J]. 石油钻探技术,2012,40(3):7–12. doi: 10.3969/j.issn.1001-0890.2012.03.002

    HAN Laiju, NIU Hongbo, DOU Yuling. Key drilling technologies for long displacement horizontal wells of low permeability reservoirs in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(3): 7–12. doi: 10.3969/j.issn.1001-0890.2012.03.002
    [3]
    史配铭,肖春学,王建军. 苏里格南部气田大斜度井钻井技术[J]. 石油钻采工艺,2019,41(1):18–22.

    SHI Peiming, XIAO Chunxue, WANG Jianjun. Drilling technologies used for the highly deviated wells in Southern Sulige Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(1): 18–22.
    [4]
    聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79.

    NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.
    [5]
    李斐,魏来,郝英状,等. 岩屑床清除工具螺旋槽道优化设计[J]. 天然气与石油,2020,38(3):50–56. doi: 10.3969/j.issn.1006-5539.2020.03.010

    LI Fei, WEI Lai, HAO Yingzhuang, et al. Optimization of spiral channel design of cleaning tools for cuttings bed[J]. Natural Gas and Oil, 2020, 38(3): 50–56. doi: 10.3969/j.issn.1006-5539.2020.03.010
    [6]
    王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
    [7]
    高爱庭. 玛湖油田致密砂砾岩油藏钻井提速研究[J]. 江汉石油职工大学学报,2019,32(6):22–24.

    GAO Aiting. A study on drilling acceleration in tight sand conglomerate reservoir in Mahu Oilfield[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2019, 32(6): 22–24.
    [8]
    耿立勇,苑塔亮. 旋转导向钻井技术在HD10-1-H2井的应用[J]. 江汉石油职工大学学报,2020,33(1):55–57,86. doi: 10.3969/j.issn.1009-301X.2020.01.017

    GENG Liyong, YUAN Taliang. Application test of rotary steering drilling technology in HD10-1-H2 Well[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2020, 33(1): 55–57,86. doi: 10.3969/j.issn.1009-301X.2020.01.017
    [9]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [10]
    路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术,2019,47(2):9–14. doi: 10.11911/syztjs.2019029

    LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029
    [11]
    柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
    [12]
    胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28–36. doi: 10.11911/syztjs.2020050

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28–36. doi: 10.11911/syztjs.2020050
    [13]
    朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液,2018,35(6):60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011

    ZHU Baozhong. Drilling fluid technology for long horizontal shale gas Well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
    [14]
    张明昌,张新亮,高剑玮. 新型XPJQ系列下套管漂浮减阻器的研制与试验[J]. 石油钻探技术,2014,42(5):114–118.

    ZHANG Mingchang, ZHANG Xinliang, GAO Jianwei. Developing and testing XPJQ series floating friction reducers for running casing[J]. Petroleum Drilling Techniques, 2014, 42(5): 114–118.
    [15]
    邹书强,张红卫,伊尔齐木,等. 顺北一区超深井窄间隙小尾管固井技术研究[J]. 石油钻探技术,2019,47(6):60–66. doi: 10.11911/syztjs.2019114

    ZOU Shuqiang, ZHANG Hongwei, Eerqm, et al. Slim liner cementing technology for ultra-deep wells with a narrow annulus in No. 1 district of Shunbei Block[J]. Petroleum Drilling Techniques, 2019, 47(6): 60–66. doi: 10.11911/syztjs.2019114
  • Related Articles

    [1]JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086
    [2]LI Hongqiang, WANG Ruihe. Research on Environmental Correction Method of Measurement Results from Near-Bit Gamma Imagers[J]. Petroleum Drilling Techniques, 2021, 49(3): 142-150. DOI: 10.11911/syztjs.2021024
    [3]ZHENG Jian, GAO Hui, HUANG Lugang, DUAN Junya, DONG Duo. Correcting Errors Due to Borehole and Formation Factors during Azimuthal Gamma Spectrum Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 104-113. DOI: 10.11911/syztjs.2019131
    [4]NI Xiaowei, XU Sihui, BIE Kang, FENG Jiaming, XU Guanyou, LIU Diren. Surrounding Rock Influence Correction for Array Laterolog Responses with Borehole Eccentricities in Horizontal Wells[J]. Petroleum Drilling Techniques, 2018, 46(4): 121-126. DOI: 10.11911/syztjs.2018056
    [5]YU Hongmin, WANG Youqi, NIE Jun, LYU Chengyuan, CUI Wenfu, ZHANG Li. Study and Application of a Correction Method for the Relative Permeability Curve of a High Water Injection Multiple[J]. Petroleum Drilling Techniques, 2018, 46(4): 104-108. DOI: 10.11911/syztjs.2018080
    [6]HONG Guobin, CHEN Mian, LU Yunhu, JIN Yan. Study on the Anisotropy Characteristics of Deep Shale in the Southern Sichuan Basin and Their Impacts on Fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78-85. DOI: 10.11911/syztjs.2018022
    [7]YANG Zhen, WEN Yi, XIAO Hongbing. A New Method of Detecting while Drilling Resistivity Anisotropy with Azimuthal Electromagnetic Wave Tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115-120. DOI: 10.11911/syztjs.201603021
    [8]Xu Haodong, Huang Genlu, Zhang Ran, Wei Hongshu, Cheng Fengrui. Method of Magnetic Interference Correction in Survey with Magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102-106. DOI: 10.3969/j.issn.1001-0890.2014.02.020
    [9]Xie Yuning, Zhou Xiaoyu. Quantitative Calculation and Correction of the Influence of Microannulus on Acoustic Amplitude Log[J]. Petroleum Drilling Techniques, 2013, 41(1): 45-50. DOI: 10.3969/j.issn.1001-0890.2013.01.009
    [10]Sidney Green. Full-Scale Deep Well Drilling Simulation[J]. Petroleum Drilling Techniques, 2011, 39(3): 1-5. DOI: 10.3969/j.issn.1001-0890.2011.03.001
  • Cited by

    Periodical cited type(14)

    1. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 .
    2. 张炜,王海华,翁炜,姚树青,邵明娟. 美国能源部地热钻井技术研发最新部署及干热岩开发示范创新实践. 钻探工程. 2024(03): 1-8 .
    3. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看
    4. 李宽,施山山,张新刚,王跃伟,许洁,张恒春. 干热岩定向钻井关键技术研究与应用. 钻采工艺. 2024(05): 7-14 .
    5. 王瑞,韩子剑,雷鸣,夏杨,张益华,陈子豪,王鹏. 废弃油井改地热井的井筒传热规律分析. 钻采工艺. 2023(05): 54-60 .
    6. 周乐. 高温地热高效开发钻井关键技术探究. 云南化工. 2022(01): 125-126 .
    7. 李根生,武晓光,宋先知,周仕明,李铭辉,朱海燕,孔彦龙,黄中伟. 干热岩地热资源开采技术现状与挑战. 石油科学通报. 2022(03): 343-364 .
    8. 曹华庆,吴波,龙志平,王殿学,黄干廷,马向东. 京津冀岩溶热储钻井关键技术. 石油钻探技术. 2021(02): 42-47 . 本站查看
    9. 贺志铎. 干热岩开发及发电技术应用分析. 云南化工. 2021(05): 98-100 .
    10. 刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系. 钻井液与完井液. 2021(04): 412-422 .
    11. 郝亚龙,葛云华,崔猛,纪国栋,殷鸽,黄家根. 钻头选型中的地层分层技术. 断块油气田. 2020(02): 248-252 .
    12. 谢文苹,路睿,张盛生,朱进守,于漂罗,张珊珊. 青海共和盆地干热岩勘查进展及开发技术探讨. 石油钻探技术. 2020(03): 77-84 . 本站查看
    13. 窦凤珂. 干热岩勘查及开发利用的关键技术. 化工设计通讯. 2020(10): 157-158 .
    14. 王恒,王磊,张东清,张进双. 干热岩钻井钻具磨损及防磨技术研究. 石油钻探技术. 2020(06): 47-53 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (584) PDF downloads (175) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return