Citation: | WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056 |
When drilling through the fractured formations of a shale gas reservoir, the formation pressure will exhibits a significant difference from normal pressure as well as after fracturing. It is hard to obtain accurate formation pore pressure in fractured formations of shale gas reservoirs by using traditional pore pressure prediction methods. To tackle this problem, we analyze the causes of dynamic changes in formation pressure in fractured formations under different operating conditions. We also analyze the large increase of formation pressure after shale gas reservoirs stimulation. Based on those analyses, we propose a method of calculating pore pressure change in both naturally fractured and stimulated shale gas reservoirs. Applying the method shows it has asimple principle and clear mechanism, and gives results which highly agree with those from field tests. As an effective method for accurately calculating dynamic pore pressure in fractured formations of shale gas reservoirs, this method offers high practical value.
[1] |
张烨,潘林华,周彤,等. 页岩水力压裂裂缝扩展规律实验研究[J]. 科学技术与工程, 2015, 15(5): 11–16.
ZHANG Ye,PAN Linhua,ZHOU Tong,et al. A study of hydraulic fracture propagation for shale fracturing[J]. Science Technology and Engineering, 2015, 15(5): 11–16.
|
[2] |
郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59.
GUO Yingtong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.
|
[3] |
COUZENS-SCHULTZ B A, AXON A, AZBEL K, et al. Pore pressure prediction in unconventional resources[R]. IPTC 16849, 2013.
|
[4] |
MATTHEWS M D. Uncertainty-shale pore pressure from borehole resistivity[R]. ARMA-04-551, 2004.
|
[5] |
PERVUKHINA M, PIANE C D, DEWHURST D N, et al. An estimation of pore pressure in shales from sonic velocities[R]. SEG-2013-0818, 2013.
|
[6] |
徐春露,孙建孟,董旭,等. 页岩气储层孔隙压力测井预测新方法[J]. 石油学报, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006
XU Chunlu, SUN Jianmeng, DONG Xu, et al. A new pore pressure logging prediction method in shale gas reservoirs[J]. Acta Petrolei Sinica, 2017, 38(6): 666–676. doi: 10.7623/syxb201706006
|
[7] |
朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
ZHU Baozhong. Drilling fluid technology for long horizontal shale gas well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
|
[8] |
侯绪田,赵向阳,孟英峰,等. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30–36.
HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, et al. Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30–36.
|
[9] |
黄国平,何世明,汤明,等. 顺南区块裂缝性储层置换式气侵影响因素研究[J]. 石油钻探技术, 2018, 46(5): 21–25.
HUANG Guoping, HE Shiming, TANG Ming, et al. A study on the effect of displacement gas cut on fractured reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21–25.
|
[10] |
高树生,刘华勋,叶礼友,等. 页岩气藏SRV区域气体扩散与渗流耦合模型[J]. 天然气工业, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012
GAO Shusheng, LIU Huaxun, YE Liyou, et al. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J]. Natural Gas Industry, 2017, 37(1): 97–104. doi: 10.3787/j.issn.1000-0976.2017.01.012
|
[11] |
刘铁成,唐海,刘鹏超,等. 裂缝性封闭页岩气藏物质平衡方程及储量计算方法[J]. 天然气勘探与开发, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008
LIU Tiecheng, TANG Hai, LIU Pengchao, et al. Material balance equation and reserve calculation method of fractured and closed shale-gas reservoir[J]. Natural Gas Exploration and Development, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008
|
[12] |
董萌.天然气压缩因子计算方法对比及应用[D].大庆: 东北石油大学, 2015.
DONG Meng. Comparison methods of compression factor of natural gas and its application[D]. Daqing: Northeast Petroleum University, 2015.
|
[13] |
刘尧文,廖如刚,张远,等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007
LIU Yaowen, LIAO Rugang, ZHANG Yuan, et al. Application of surface-downhole combined microseismic monitoring technology in the Fuling Shale Gas Field and its enlightenment[J]. Natural Gas Industry, 2016, 36(10): 56–62. doi: 10.3787/j.issn.1000-0976.2016.10.007
|
[14] |
HE Jun, LING Kegang, PEI Peng, et al. Experimental investigation on the effect of pore pressure on rock permeability-Bakken formation case[R]. ARMA-2015-036, 2015.
|
[15] |
郑有成.川东北部飞仙关组探井地层压力测井预测方法与工程应用研究[D].成都: 西南石油学院, 2004.
ZHENG Youcheng. Study on logging prediction method and engineering application of exploration well formation pressure in Feixianguan Formation in Northeast Sichuan[D]. Chengdu: Southwest Petroleum Institute, 2004.
|
1. |
张民立,袁贵德,庄伟,王威,刘武,郭超,明洪涛,杨鹏梅. 青海油田风西区块长水平段水平井钻井液技术. 钻井液与完井液. 2024(01): 31-38 .
![]() | |
2. |
梁旭. 大庆油田致密油钻井技术难点与关键技术优化. 石油工业技术监督. 2024(07): 51-55 .
![]() | |
3. |
潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 .
![]() | |
4. |
刘铭. 大庆徐深气田深层水平井钻井技术研究. 西部探矿工程. 2022(04): 110-111+115 .
![]() | |
5. |
李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 .
![]() | |
6. |
邱春阳,王其星,杨世鑫,张翔宇. 富源201–3X超深定向井钻井液技术. 石油地质与工程. 2021(04): 98-101 .
![]() | |
7. |
柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 .
![]() | |
8. |
陈国军. 伊拉克米桑油田裂缝性地层非标井眼水平井钻井技术. 天然气勘探与开发. 2020(02): 45-52 .
![]() | |
9. |
侯杰,吴迪. 高矿化度盐水钻井液体系的研究与应用. 西部探矿工程. 2020(07): 97-99 .
![]() | |
10. |
胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 .
![]() | |
11. |
彭双磊,胡贵,张国辉,刘庆岭,冯剑,陶冶. 页岩油储层钻井液技术现状及发展方向. 中国石油和化工标准与质量. 2020(17): 193-197 .
![]() | |
12. |
权俊生. 大庆油田深井提速及降本增效技术研究. 石油石化节能. 2019(01): 11-14+8 .
![]() | |
13. |
黄金锐. Y98-P3井钻井施工实践与认识. 西部探矿工程. 2019(03): 94-95 .
![]() | |
14. |
丁建岭. 致密油藏水平井中高性能水基钻井液的应用. 化工设计通讯. 2019(02): 233 .
![]() | |
15. |
苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 .
![]() | |
16. |
徐跟峰. 高性能水基钻井液技术特点及应用进展. 西部探矿工程. 2019(08): 85-86 .
![]() | |
17. |
关而沫. 大庆油田深井提速技术研究. 西部探矿工程. 2019(09): 24-25+27 .
![]() | |
18. |
王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 .
![]() | |
19. |
魏红旭. 高性能水基钻井液在XX水平井中的应用. 石化技术. 2018(03): 190 .
![]() | |
20. |
董明. 高性能钻井液体系在水平井钻井中的应用. 西部探矿工程. 2018(04): 39-40 .
![]() | |
21. |
刘政,李俊才,李轩,李茂森,胡静,范劲. CQH-M2高性能水基钻井液及其在威204H11-4井的应用. 钻井液与完井液. 2018(03): 32-36 .
![]() | |
22. |
刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 .
![]() | |
23. |
赵成志. F98-P9井优质快速钻井施工技术. 石油和化工设备. 2018(12): 62-63+67 .
![]() | |
24. |
雷志永,陈强,郭涛,张永. 强封堵高性能水基钻井液在伊拉克Missan油田水平井中的应用. 长江大学学报(自科版). 2017(19): 63-67+104+119 .
![]() | |
25. |
罗春芝,何晨晨,杨云锋. 聚有机硅胺强抑制剂LGA-1的室内研究. 断块油气田. 2017(02): 273-276 .
![]() | |
26. |
李茂. 高性能水基钻井液应用研究. 化工管理. 2017(06): 25 .
![]() | |
27. |
王蓓蕾,赵海锋,郭康. 纳米成膜封堵钻井液在临兴区块的应用. 广东化工. 2017(13): 67-69 .
![]() | |
28. |
杨定桥,王超. 高性能水基钻井液应用研究. 中国石油石化. 2017(10): 86-87 .
![]() | |
29. |
侯杰. 硬脆性泥页岩微米-纳米级裂缝封堵评价新方法. 石油钻探技术. 2017(03): 32-37 .
![]() | |
30. |
吴爽. 辽河油田无固相强抑制水基钻井液技术. 石油钻探技术. 2017(06): 42-48 .
![]() | |
31. |
郭盛堂. 高性能水基钻井液体系研制与应用. 探矿工程(岩土钻掘工程). 2017(11): 26-29 .
![]() | |
32. |
郑文龙,乌效鸣,黄聿铭,王稳石,吴笛,黄河. 松辽盆地大陆科钻二开段大井眼钻井液技术. 地质与勘探. 2016(05): 931-936 .
![]() | |
33. |
梁文利. 高性能水基钻井液体系在水平井中的应用. 化工管理. 2016(21): 201 .
![]() | |
34. |
张明. 硅铵聚合物钻井液在永乐油田水平井中的应用. 石化技术. 2016(07): 189+193 .
![]() | |
35. |
杨智光. 大庆油田钻井完井技术新进展及发展建议. 石油钻探技术. 2016(06): 1-10 .
![]() | |
36. |
孙妍. 龙26-平25长水平段水平井钻井技术. 探矿工程(岩土钻掘工程). 2016(11): 41-44 .
![]() |