LI Fengxia, WANG Haibo, ZHOU Tong, HAN Ling. The Influence of Fractures in Shale Oil Reservoirs on CO2 Huff and Puff and Its Pore Production Characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38-44. DOI: 10.11911/syztjs.2022006
Citation: LI Fengxia, WANG Haibo, ZHOU Tong, HAN Ling. The Influence of Fractures in Shale Oil Reservoirs on CO2 Huff and Puff and Its Pore Production Characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38-44. DOI: 10.11911/syztjs.2022006

The Influence of Fractures in Shale Oil Reservoirs on CO2 Huff and Puff and Its Pore Production Characteristics

More Information
  • Received Date: August 04, 2021
  • Revised Date: December 26, 2021
  • Available Online: February 13, 2022
  • To study the influence of fractures from shale hydraulic fracturing on the CO2 huff and puff, low-field nuclear magnetic resonance was adopted in CO2 huff and puff experiments with shales of different permeabilities, and the influence of fractures on the CO2 huff and puff effect in reservoirs of different permeabilities was investigated. Experimental results show that fractures significantly improve the oil production rate and recovery at the initial stage of the CO2 huff and puff operations. However, the influence of fractures on the recovery gradually decreases as huff and puff continues and the permeability increases. The influence of permeability on huff and puff of fractured cores is much lower than that of unfractured cores, which indicates that fractures may reduce the influence of permeability on recovery by CO2 huff and puff. With continuing huff and puff, the increase rate in the degree of reserve recovery of crude oil from macropores contributed by fractures declines while that of crude oil from micropores increases. Despite this finding, macropores continued to be the main contributor of crude oil production. The results indicate that the quick and high production of crude oil from macropores mainly depends on volume expansion and dissolved gas drive. In contrast, the slow and low production of crude oil from micropores is primarily brought by extraction and mass transfer. The results of this study have provided a theoretical basis for evaluating the characteristics of oil production from fractured reservoirs and improving production performance.
  • [1]
    张林晔,李钜源,李政,等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展,2014,29(6):700–711. doi: 10.11867/j.issn.1001-8166.2014.06.0700

    ZHANG Linye, LI Juyuan, LI Zheng, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6): 700–711. doi: 10.11867/j.issn.1001-8166.2014.06.0700
    [2]
    卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436–444.

    LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436–444.
    [3]
    陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081

    CHEN Zuo, LIU Honglei, LI Yingjie, et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081
    [4]
    胡伟,吕成远,王锐,等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报,2018,39(2):201–207. doi: 10.7623/syxb201802008

    HU Wei, LYU Chengyuan, WANG Rui, et al. Porous flow mechanisms and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008
    [5]
    WANG Haitao, LUN Zengmin, LYU Chengyuan, et al. Nuclear-magnetic-resonance study on mechanisms of oil mobilization in tight sandstone reservoir exposed to carbon dioxide[J]. SPE Journal, 2018, 23(3): 750–761. doi: 10.2118/179554-PA
    [6]
    TORABI F, QAZVINI FIROUZ A, KAVOUSI A, et al. Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies)[J]. Fuel, 2012, 93: 443–453. doi: 10.1016/j.fuel.2011.08.037
    [7]
    张怿赫,盛家平,李情霞,等. CO2吞吐技术应用进展[J]. 特种油气藏,2021,28(6):1–10.

    ZHANG Yihe, SHENG Jiaping, Li Qingxia, et al. Advances in the application of CO2 stimulation technology[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 1–10.
    [8]
    杨正明,刘学伟,张仲宏,等. 致密油藏分段压裂水平井注二氧化碳吞吐物理模拟[J]. 石油学报,2015,36(6):724–729. doi: 10.7623/syxb201506009

    YANG Zhengming, LIU Xuewei, ZHANG Zhonghong, et al. Physical simulation of staged-fracturing horizontal wells using CO2 huff and puff in tight oil reservoirs[J]. Acta Petrolei Sinica, 2015, 36(6): 724–729. doi: 10.7623/syxb201506009
    [9]
    钱坤,杨胜来,马轩,等. 超低渗透油藏CO2吞吐利用率实验研究[J]. 石油钻探技术,2018,46(6):77–81.

    QIAN Kun, YANG Shenglai, MA Xuan, et al. CO2 utilization ratio simulation during a CO2 huff-and-puff process in ultra-low permeability oil reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(6): 77–81.
    [10]
    QIAN Kun, YANG Shenglai, DOU Hongen, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs[J]. Energies, 2018, 11(10): 2843. doi: 10.3390/en11102843
    [11]
    黄小亮,贾新峰,周翔,等. 延长油田低渗油藏长岩心二氧化碳吞吐参数优化[J]. 新疆石油地质,2015,36(3):313–316.

    HUANG Xiaoliang, JIA Xinfeng, ZHOU Xiang, et al. Optimization of long core CO2 huff-n-puff experimental parameters in low permeability reservoir, Yanchang Oilfield[J]. Xinjiang Petroleum Geology, 2015, 36(3): 313–316.
    [12]
    XIAO Pufu, YANG Zhengming, WANG Xuewu, et al. Experimental investigation on CO2 injection in the Daqing extra/ultra-low permeability reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 149: 765–771. doi: 10.1016/j.petrol.2016.11.020
    [13]
    霍刚,范潇. 混注烟道气辅助蒸汽吞吐驱替机理数值模拟研究[J]. 油气地质与采收率,2012,19(4):59–61,65. doi: 10.3969/j.issn.1009-9603.2012.04.017

    HUO Gang, FAN Xiao. Numerical simulation study on displacement mechanism of flue gas assisting steam huff and puff[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(4): 59–61,65. doi: 10.3969/j.issn.1009-9603.2012.04.017
    [14]
    ABEDINI A, TORABI F. Oil recovery performance of immiscible and miscible CO2 huff-and-puff processes[J]. Energy & Fuels, 2014, 28(2): 774–784.
    [15]
    李二党,韩作为,高祥瑞,等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术,2020,48(5):85–91. doi: 10.11911/syztjs.2020078

    LI Erdang, HAN Zuowei, GAO Xiangrui, et al. Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85–91. doi: 10.11911/syztjs.2020078
    [16]
    WEI Bing, GAO Ke, SONG Tao, et al. Nuclear-magnetic-resonance monitoring of mass exchange in a low-permeability matrix/fracture model during CO2 cyclic injection: a mechanistic study[J]. SPE Journal, 2020, 25(1): 440–450. doi: 10.2118/199345-PA
    [17]
    唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术,2020,48(1):98–103. doi: 10.11911/syztjs.2019125

    TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125
    [18]
    WEI Bing, LU Laiming, PU Wanfen, et al. Production dynamics of CO2 cyclic injection and CO2 sequestration in tight porous media of Lucaogou Formation in Jimsar Sag[J]. Journal Petroleum Science and Engineer, 2017, 157: 1084–1094. doi: 10.1016/j.petrol.2017.08.023
    [19]
    贾瑞轩,孙灵辉,苏致新,等. 二氧化碳吞吐致密油藏的可动用性[J]. 断块油气田,2020,27(4):504–508.

    JIA Ruixuan, SUN Linghui, SU Zhixin, et al. Availability of CO2 huff and puff in tight reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 504–508.
    [20]
    巩联浩,刘继梓,武兴,等. 裂缝性致密油藏二氧化碳吞吐基质-裂缝间流体渗流特征研究[J]. 特种油气藏,2021,28(1):118–124. doi: 10.3969/j.issn.1006-6535.2021.01.017

    GONG Lianhao, LIU Jizi, WU Xing, et al. Study on seepage characteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 118–124. doi: 10.3969/j.issn.1006-6535.2021.01.017
  • Related Articles

    [1]WANG Xiaoyu, REN Haojie, GUANG Yichu, ZHANG Juan, YIN Xiaoxia, MA Bin. Experimental Study on Improving Condensate Oil Recovery by CO2 Huff and Puff in Condensate Gas Reservoirs[J]. Petroleum Drilling Techniques, 2025, 53(1): 86-93. DOI: 10.11911/syztjs.2025011
    [2]LI Bangguo, HOU Jiakun, LEI Zhaofeng, ZHANG Bo, WANG Bin, CHEN Jiang. Evaluation of Shale Oil Extraction by Supercritical CO2 and Analysis of Influencing Factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94-103. DOI: 10.11911/syztjs.2024069
    [3]WANG Zhizhan, HAN Yujiao, JIN Yunyun, WANG Yong, LUO Xi, YAN Yongxin. Nuclear Magnetic Resonance Evaluation Method of Shale Oil with Medium and Low Maturity in Biyang Sag[J]. Petroleum Drilling Techniques, 2023, 51(5): 58-65. DOI: 10.11911/syztjs.2023094
    [4]XIAO Lizhi, LUO Sihui, LONG Zhihao. The Course of Development and the Future of Wellsite NMR Technologies and Their Applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140-148. DOI: 10.11911/syztjs.2023034
    [5]GUO Jiangfeng, XU Chenyu, XIE Ranhong, WANG Shuai, LIU Jilong, WANG Meng. Study on the NMR Response Mechanism of Micro-Fractured Tight Sandstones[J]. Petroleum Drilling Techniques, 2022, 50(4): 121-128. DOI: 10.11911/syztjs.2022091
    [6]WANG Zhizhan, DU Huanfu, LI Xiangmei, NIU Qiang. Key Development Fields and Construction of Technical System for Logging of Continental Shale Oil[J]. Petroleum Drilling Techniques, 2021, 49(4): 155-162. DOI: 10.11911/syztjs.2021093
    [7]LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
    [8]LI Xin, MI Jintai, ZHANG Wei, YAO Jinzhi, LI Sanguo. Design and Test Verification of NMR Fluid Analysis Device for Downhole Logging While Drilling[J]. Petroleum Drilling Techniques, 2020, 48(2): 130-134. DOI: 10.11911/syztjs.2020027
    [9]WEI Qing, LI Zhiping, BAI Ruiting, ZHANG Tiantian, NAN Junxiang. An Experimental Study on the Effect of Microscopic Pore Structure on Spontaneous Imbibition in Tight Sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109-116. DOI: 10.11911/syztjs.201605019
    [10]ZHU Linqi, ZHANG Chong, HU Jia, WEI Yang, GUO Cong. An NMR Logging Permeability Evaluation Method Based on the Representative Elementary Volume Model[J]. Petroleum Drilling Techniques, 2016, 44(4): 120-126. DOI: 10.11911/syztjs.201604021
  • Cited by

    Periodical cited type(16)

    1. 王兴文,缪尉杰,何新星,许剑. 川南威荣气田深层页岩气工程技术进展. 石油实验地质. 2023(06): 1170-1177 .
    2. 车卫勤,许雅潇,岳小同,罗忠保,姜维,杜晶,赵小勇. 渝西大足区块超深超长页岩气水平井钻井技术. 石油钻采工艺. 2022(04): 408-414 .
    3. 王彦祺,贺庆,龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向. 油气藏评价与开发. 2021(03): 356-364 .
    4. 杨哲,李晓平,万夫磊. 四川长宁页岩气井身结构优化探讨. 钻采工艺. 2021(03): 20-23 .
    5. 周亚光. 青海省都兰县八宝山页岩气3井钻探施工技术研究. 能源与环保. 2020(02): 44-46+50 .
    6. 刘浩,夏巍巍. JY194-4HF井页岩气水平井优快钻井技术. 内蒙古石油化工. 2020(07): 85-89 .
    7. 彭兴,周玉仓,龙志平,张树坤. 南川地区页岩气水平井优快钻井技术进展及发展建议. 石油钻探技术. 2020(05): 15-20 . 本站查看
    8. 樊华,龙志平. 页岩气水平井JY10HF井钻井关键技术及认识. 石油机械. 2019(01): 14-19 .
    9. 李林,王存新,罗朝东. 永川页岩气水平井优快钻井关键技术研究. 钻采工艺. 2018(04): 105-106 .
    10. 汪洋,骆新颖,张斌. 中石油国家页岩气示范区水平井钻井关键技术研究. 钻采工艺. 2017(05): 26-28+2 .
    11. 李帮民,侯树刚,杨甘生,张建华,王惠文,龚媛. 气举反循环防漏钻井施工参数适应性分析. 断块油气田. 2016(06): 838-841 .
    12. 李根生,盛茂,田守嶒,葛洪魁,黄中伟,宋先知. 页岩气储层水平井与压裂工程基础问题探讨. 科学通报. 2016(26): 2883-2890 .
    13. 龙志平,王彦祺,周玉仓. 隆页1HF页岩气井钻井关键技术. 石油钻探技术. 2016(02): 16-21 . 本站查看
    14. 凡帆,王京光,蔺文洁. 长宁区块页岩气水平井无土相油基钻井液技术. 石油钻探技术. 2016(05): 34-39 . 本站查看
    15. 孙坤忠,陶谦,周仕明,高元. 丁山区块深层页岩气水平井固井技术. 石油钻探技术. 2015(03): 55-60 . 本站查看
    16. 陈颖杰,刘阳,徐婧源,邓传光,袁和义. 页岩气地质工程一体化导向钻井技术. 石油钻探技术. 2015(05): 56-62 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (510) PDF downloads (88) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return