Citation: | DUAN Penghui, LEI Xiujie, LAI Angjie, ZHANG Tongwu, KANG Bo. Research and Application of Fixed-Plane Perforating and Fracturing Technologies in Ultra-Low Permeability Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(5): 104-109. DOI: 10.11911/syztjs.2019088 |
The Ansai Chang 6 ultra-low permeability reservoir has been developed for many years. The front edge of water flooding has swept the high permeability reservoir zone, and a large amount of remaining oil was distributed in the longitudinal low permeability zones of this reservoir. In order to tap the remaining oil in the low-permeability zone, a fixed-plane perforating and fracturing technology was put forward to form a fan-shaped stress concentration plane perpendicular to the wellbore axis, guide the radial extension of hydraulic fractures along the wellbore and control the longitudinal extension of the fractures, so as to tap the potential of remaining oil in the low permeability zone. Based on the studies of remaining oil distribution and the variation characteristics of rock mechanics parameters under long-term injection and production conditions. Then, the effect of fracture initiation under different fixed-plane perforating phases was simulated and analyzed, and the optimized the perforating phase angle according to the size of fractures fusion area. At the same time, the parameters of fracturing stimulation were optimized according to the results of fracture simulation under weak stress difference, by which the fracture height was controlled effectively. The fixed-plane perforating and fracturing technology was applied in 78 wells of the Ansai Chang 6 reservoir. The average daily oil increase per single well was 1.8 t/d after the stimulation, about twice higher than that of the conventional fracturing technologies, with the good results. The research and application of fixed-plane perforating and fracturing technology has provided a new technical means for tapping the potential of remaining oil in low-permeability zone of ultra-low permeability reservoirs.
[1] |
王东琪, 殷代印. 特低渗透油藏水驱开发效果评价[J]. 特种油气藏, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
WANG Dongqi, YIN Daiyin. Waterflooding performance evaluation in ultra-low permeability oil reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 107–110. doi: 10.3969/j.issn.1006-6535.2017.06.020
|
[2] |
张浩, 仲向云, 党永潮, 等. 鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J]. 断块油气田, 2018, 25(1): 34–38.
ZHANG Hao, ZHONG Xiangyun, DANG Yongchao, et al. Microscopic pore structure of Chang 6 reservoir in Ansai Oilfield, Ordos Basin[J]. Fault-Block Oil & Gas Field, 2018, 25(1): 34–38.
|
[3] |
董晓军, 仝方超, 蒲阳峰, 等. 基于岩石物理相研究特低渗透油藏宏观剩余油分布[J]. 科学技术与工程, 2016, 16(4): 167–172. doi: 10.3969/j.issn.1671-1815.2016.04.031
DONG Xiaojun, TONG Fangchao, PU Yangfeng, et al. A study on macroscopic remaining oil distribution of ultra-low permeability oil reservoir using petrophysical facies[J]. Science Technology and Engineering, 2016, 16(4): 167–172. doi: 10.3969/j.issn.1671-1815.2016.04.031
|
[4] |
刘晓峰, 梁积伟, 郭晓丹, 等. 延安地区长6储层非均性特征[J]. 西安石油大学学报, 2019, 39(3): 507–514.
LIU Xiaofeng, LIANG Jiwei, GUO Xiaodan, et al. Reservoir heterogeneity characteristics of Chang 6 reservoir in Yan’an Area[J]. Journal of Xi’an University of Science and Technology, 2019, 39(3): 507–514.
|
[5] |
王友启. 特高含水期油田" 四点五类”剩余油分类方法[J]. 石油钻探技术, 2017, 45(2): 76–80.
WANG Youqi. " Four Points and Five Types”remaining oil classification in oilfields with ultra-high water cut[J]. Petroleum Drilling Techniques, 2017, 45(2): 76–80.
|
[6] |
杨刚, 孟尚志, 夏诗语. 孔隙压力对砂岩岩石力学特性影响试验[J]. 大庆石油地质与开发, 2019, 38(2): 67–72.
YANG Gang, MENG Shangzhi, XIA Shiyu. Influencing experiment of the pore pressure on the sandstone mechanical properties[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(2): 67–72.
|
[7] |
张志强, 师永民, 卜向前, 等. 低渗透油藏注水开发中地应力方向变化的研究分析[J]. 北京大学学报(自然科学版), 2016, 52(5): 861–870.
ZHANG Zhiqiang, SHI Yongmin, BU Xiangqian, et al. A study of in-situ stress direction change during waterfloodingin the low permeability reservoirs[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 861–870.
|
[8] |
NARASIMHAN S, SHAIKH H, GARY J K, et al. Effect of horizontal stress models and Biot poro-elasticity on predicted fracture geometry[R]. SPE 179162, 2016.
|
[9] |
张鹏海, 张子麟, 李明, 等. 低渗储油层水力压裂裂缝延伸过程及成缝机理[J]. 东北大学学报(自然科学版), 2019, 40(5): 745–749. doi: 10.12068/j.issn.1005-3026.2019.05.026
ZHANG Penghai, ZHANG Zilin, LI Ming, et al. Extension process and fracture mechanism of hydraulic fractures in low permeability reservoir[J]. Journal of Northeastern University (Natural Science), 2019, 40(5): 745–749. doi: 10.12068/j.issn.1005-3026.2019.05.026
|
[10] |
郭兴午, 刘强, 张柟乔, 等. 页岩定面射孔水力裂缝起裂特征探索及应用[J]. 断块油气田, 2018, 25(2): 254–257.
GUO Xingwu, LIU Qiang, ZHANG Nanqiao, et al. Exploration and application of hydraulic fracture initiation characteristics of shale set surface perforating[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 254–257.
|
[11] |
赵振峰, 唐梅荣, 逄铭玉, 等. 定面射孔对压裂初始裂缝形态的影响研究[J]. 科学技术与工程, 2016, 16(22): 60–63. doi: 10.3969/j.issn.1671-1815.2016.22.010
ZHAO Zhenfeng, TANG Meirong, PANG Mingyu, et al. Impact of transvers perforations on the initial fracture shape of hydraulic fracturing[J]. Science Technology and Engineering, 2016, 16(22): 60–63. doi: 10.3969/j.issn.1671-1815.2016.22.010
|
[12] |
张儒鑫, 侯冰, 单清林, 等. 采用定面射孔时射孔参数的优选方法[J]. 钻采工艺, 2017, 40(3): 38–41. doi: 10.3969/J.ISSN.1006-768X.2017.03.12
ZHANG Ruxin, HOU Bing, SHAN Qinglin, et al. Optimum selection method of perforation parameters for fixed-plane perforation[J]. Drilling & Production Technology, 2017, 40(3): 38–41. doi: 10.3969/J.ISSN.1006-768X.2017.03.12
|
[13] |
文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究[J]. 岩石力学与工程学报, 2019, 38(7): 1332–1343.
WEN Zhijie, TIAN Lei, JIANG Yujing, et al. Research on damage constitutive model of inhomogeneous based on strain energy density[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332–1343.
|
[14] |
张洪, 孟选刚, 邵长金, 等. 水平压裂裂缝形成机理及监测: 以七里村油田为例[J]. 岩性油气藏, 2018, 30(5): 138–145.
ZHANG Hong, MENG Xuangang, SHAO Changjin, et al. Forming mechanism and monitoring of horizontal hydraulic fracture: a case from Qilicun Oilfield[J]. Lithologic Reservoirs, 2018, 30(5): 138–145.
|
[15] |
谷文彬, 裴玉彬, 赵安军, 等. 人工隔层技术在控缝高压裂井中的应用[J]. 石油钻采工艺, 2017, 39(5): 646–651.
GU Wenbin, PEI Yubin, ZHAO Anjun, et al. Application of artificial barrier technology to fracture height control in fracturing wells[J]. Oil Drilling & Production Technology, 2017, 39(5): 646–651.
|
[16] |
姬伟, 毕凯, 李荣, 等. 提高安塞油田加密区单井产能工艺试验[J]. 钻采工艺, 2018, 41(4): 41–44. doi: 10.3969/J.ISSN.1006-768X.2018.04.13
JI Wei, BI Kai, LI Rong, et al. Field test of procedures used to improve productivity of single wells in infill drilling area of Ansai Oilfield[J]. Drilling & Production Technology, 2018, 41(4): 41–44. doi: 10.3969/J.ISSN.1006-768X.2018.04.13
|
[17] |
杜现飞, 张翔, 唐梅荣, 等. 薄互层定点多级脉冲式压裂技术研究[J]. 钻采工艺, 2018, 41(1): 65–68.
DU Xianfei, ZHANG Xiang, TANG Meirong, et al. Research on multi-stage pulsed fracturing technology for thin interbeds[J]. Drilling & Production Technology, 2018, 41(1): 65–68.
|
[18] |
曹广胜, 陈小璐, 王朔, 等. 薄差储层注采井组对应压裂裂缝参数优化[J]. 科学技术与工程, 2018, 18(32): 20–24. doi: 10.3969/j.issn.1671-1815.2018.32.004
CAO Guangsheng, CHEN Xiaolu, WANG Shuo, et al. Parameters optimization of thin and poor reservoir injection production well group corresponding fracturing[J]. Science Technology and Engineering, 2018, 18(32): 20–24. doi: 10.3969/j.issn.1671-1815.2018.32.004
|
[1] | GAO Hangxian, LI Zhenxiang, HU Yanfeng. Key Drilling Technologies for Increasing ROP in Ultra-Deep Well Yuanshen 1[J]. Petroleum Drilling Techniques, 2024, 52(3): 28-33. DOI: 10.11911/syztjs.2024054 |
[2] | WANG Chunsheng, FENG Shaobo, ZHANG Zhi, ZHOU Bo, LYU Xiaogang, ZHOU Bao. Key Technologies for Drilling Design of Well Shendi Take-1[J]. Petroleum Drilling Techniques, 2024, 52(2): 78-86. DOI: 10.11911/syztjs.2024025 |
[3] | WU Bozhi, ZHANG Huaibing. Cementing Technology of a Self-Healing Cement Slurry in the Carbonate Formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67-73. DOI: 10.11911/syztjs.2020071 |
[4] | YE Jinlong, SHEN Jianwen, WU Yujun, DU Zhenghong, SUI Sheng, LI Lin. Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056 |
[5] | LU Peiqing, SANG Laiyu, XIE Shaoai, GAO Yuan, ZHANG Jiaying, KANG Xuliang. Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52-58. DOI: 10.11911/syztjs.2018141 |
[6] | CHAI Long, LIN Yongxue, JING Junbin, HAN Zixuan. Anti-Gas Channeling Technology with Gas-Block Plug for High Temperature and High Pressure Wells in the Periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40-45. DOI: 10.11911/syztjs.2018111 |
[7] | CHEN Ming, HUANG Zhiyuan, MA Qingtao, LIU Yunpeng, GE Pengfei, XIA Guangqiang. Design and Drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15-20. DOI: 10.11911/syztjs.201704003 |
[8] | Luo Yucai, Li Jingying, Li Zhenhao, Wang Dongming, Cheng Xiaodong. ROP Improvement Techniques Applied in Well Yangtan 1 when Drilling into a Deep Buried Hill[J]. Petroleum Drilling Techniques, 2015, 43(6): 130-134. DOI: 10.11911/syztjs.201506024 |
[9] | Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008 |
[10] | Yao Yong, Yin Zongguo, Jiao Jianfang, Guo Guangping, Hong Shaoqing. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(1): 118-122. DOI: 10.3969/j.issn.1001-0890.2013.01.023 |
1. |
杨连如,李锦锋,孙继继,王茜,吴彦君,任颖惠. 致密油地质工程一体化评价体系研究——以鄂尔多斯盆地甘泉西部长8油藏为例. 地球物理学进展. 2025(01): 166-175 .
![]() | |
2. |
郭秀鹏. 基于地质工程一体化压裂参数优化及现场应用——以中原油田东濮老区A区块为例. 石油地质与工程. 2025(02): 1-5 .
![]() | |
3. |
徐洲,孔祥伟,谢昕,王存武,王晨月. 天然裂缝和层理的角度对深煤层水力裂缝扩展的影响. 断块油气田. 2025(03): 493-501 .
![]() | |
4. |
曹炜,马永宁,孟浩,拜杰,张同伍,鲜晟,徐荣利,赵国翔,涂志勇. 庆城页岩油水力压裂试验场大斜度取心井裂缝描述与认识. 中国石油勘探. 2025(02): 133-145 .
![]() | |
5. |
屈雪峰,常睿,何右安,雷启鸿,黄天镜,王高强,关云,李桢. 庆城油田长7段页岩油藏水平井体积压裂渗吸和驱替机理. 新疆石油地质. 2025(03): 344-352 .
![]() | |
6. |
杨静,张献伟,李锦锋,龚嘉顺,张梦雅,杨峰,薛井泉,白峰. 下寺湾油田致密油地质工程一体化压裂技术. 石油化工应用. 2025(05): 15-20 .
![]() | |
7. |
李战奎,吴立伟,郭明宇,徐鲲,马福罡,李文龙. 渤中凹陷深层高压井地质工程一体化技术研究与应用. 石油钻探技术. 2024(02): 194-201 .
![]() | |
8. |
郑健,何永生,汪勇,蔡景顺,唐煊赫,朱海燕. 基于FEM-DFN的页岩气井复杂裂缝扩展与优化——以长宁页岩气藏X1水平井组为例. 断块油气田. 2024(03): 415-423 .
![]() | |
9. |
刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 .
![]() | |
10. |
郑马嘉,郭兴午,伍亚,赵文韬,邓琪,谢维扬,欧志鹏. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破. 中国石油勘探. 2024(03): 58-68 .
![]() | |
11. |
项远铠,张谷畅,承宁,马俊修,张建军,王博. 深层砂砾岩整体压裂矿场试验研究. 断块油气田. 2024(05): 922-929 .
![]() | |
12. |
沈童,卢文涛,郑爱维,王立,常振. 四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法. 天然气勘探与开发. 2024(05): 39-47 .
![]() | |
13. |
刘合,慕立俊,齐银,陈文斌,拜杰,涂志勇. 基于光纤监测的分段压裂多簇均衡性评价与优化建议. 钻采工艺. 2024(06): 1-7 .
![]() | |
14. |
江智强,王治国,李紫莉,韩巧荣,李在顺,何淼,周少伟. 氮气泡沫压裂优化设计与应用实践. 钻采工艺. 2024(06): 76-82 .
![]() | |
15. |
张矿生,慕立俊,陆红军,齐银,薛小佳,拜杰. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识. 钻采工艺. 2024(06): 16-27 .
![]() | |
16. |
张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 .
![]() | |
17. |
刘星,邱建,陈作,张旭东,李双明,齐自立. 基于八叉树网格的页岩压裂复杂缝网面积计算方法. 石油钻探技术. 2024(06): 117-125 .
![]() | |
18. |
马立军,王骁睿,赵倩倩,姬靖皓. 页岩油环保型开发策略实现资源开发和环境保护协调发展. 石油钻采工艺. 2024(05): 635-650 .
![]() | |
19. |
张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 .
![]() |