Citation: | WANG Chunsheng, FENG Shaobo, ZHANG Zhi, et al. Key Technologies for Drilling Design of Well Shendi Take-1 [J]. Petroleum Drilling Techniques,2024, 52(2):78-86. DOI: 10.11911/syztjs.2024025 |
The design depth of Well Shendi Take-1 is 11100 meters, with a predicted bottom hole temperature of 213 °C and a predicted formation pressure of 133 MPa. The drilling operation encounters exceptionally severe well conditions characterized by ultra deep, ultra-high temperature, ultra-high pressure, and high sulfur content. By conducting geological engineering, integration research, the distribution patterns of fractures in igneous rocks, gypsum salt rocks, and carbonate rocks and the engineering risks they bring were determined. The well positions were optimized to reduce the engineering difficulty while fulfilling geological objectives. Building upon comprehensive research in geological engineering intergration and prediction of five pressure profiles, this study meticulously considered the deep geological and engineering risks, and designed the five-section casing program. The design and verification of ultra-deep well casings were carried out. The tensile strength of the casing and the bearing capacity of the drilling rig were taken into consideration, and the force of wellhead tools on the ultra-long and overweight casing was simulated and calculated to avoid plastic deformation of the casing during the operation. Moreover, the design of the drilling tool assembly fully considered hydraulic parameters and vibration effects. This approach ensured safe drilling practices and facilitated speed enhancements within the the optimal drilling parameter range. On-site implementation progress demonstrates that the key technologies in drilling design for Well Shendi Take-1 can solve the drilling technical difficulties and achieve the goal of successful ultra-deep drilling at a depth of 10000meters.
[1] |
GALVAN I I, MALLANAO G L, MCCLELLAND G, et al. Pushing coiled tubing design and manufacturing boundaries to service 50, 000-ft mega-reach wells in Abu Dhabi[R]. SPE 212892, 2023.
|
[2] |
莫杰. 科拉超深钻的重大成果[J]. 地质与勘探,1987(5):27–28.
MO Jie. Major achievements of Kola ultra deep drilling[J]. Geology and Exploration, 1987(5): 27–28.
|
[3] |
杨明清,杨一鹏,卞玮,等. 俄罗斯超深井钻井进展及技术进步[J]. 石油钻采工艺,2021,43(1):15–20.
YANG Mingqing, YANG Yipeng, BIAN Wei, et al. Drilling progress and technological improvement of ultradeep wells in Russia[J]. Oil Drilling & Production Technology, 2021, 43(1): 15–20.
|
[4] |
苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.
SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
|
[5] |
杨沛,刘洪涛,李宁,等. 塔里木油田超深井钻井设计及优化技术:以亚洲最深井轮探1井为例[J]. 中国石油勘探,2021,26(3):126–135.
YANG Pei, LIU Hongtao, LI Ning, et al. Drilling design and optimization technology of ultra-deep wells in the Tarim Oilfield: a case study of Well Luntan 1, the deepest well in Asia[J]. China Petroleum Exploration, 2021, 26(3): 126–135.
|
[6] |
王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022,50(5):27–33.
WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep Well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27–33.
|
[7] |
贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版),2023,47(5):1–12.
JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 1–12.
|
[8] |
宋周成,翟文宝,邓昌松,等. 富满油田超深井井身结构优化技术与应用[J]. 钻采工艺,2022,45(6):36–41.
SONG Zhoucheng, ZHAI Wenbao, DENG Changsong, et al. Optimization technology and application of casing program of ultra-deep wells in Fuman Oilfield[J]. Drilling & Production Technology, 2022, 45(6): 36–41.
|
[9] |
王团,李奎周,赵海波,等. 泥页岩油井震结合孔隙压力预测方法研究及应用[C]//CPS/SEG北京2018国际地球物理会议暨展览电子论文集. 北京:《中国学术期刊(光盘版)》电子杂志社,2018:1325-1328.
WANG Tuan, LI Kuizhou, ZHAO Haibo, et al. Research and application of shale oil well seismic and pore pressure prediction methods[C]//CPS/SEG Beijing 2018 International Geophysical Conference and Exhibition Electronic Papers Collection. Beijing: “Chinese Academic Journal (CD-ROM Edition)” E-Journal, 2018: 1325-1328.
|
[10] |
刘素君,唐克松,雷俨卜. 应对复杂推覆体七开非常规井身结构开发与应用:以红星1井为例[C]//第33届全国天然气学术年会(2023)论文集(04钻采工程). 北京:中国石油学会天然气专业委员会,2023:551-560.
LIU Sujun, TANG Kesong, LEI Yanbu. Development and application of unconventional well bore structures for complex nappe seven openings: taking Hongxing 1 Well as an example[C]//Proceedings of the 33rd National Natural Gas Academic Annual Conference (2023) (04 Drilling and Production Engineering). Beijing: Natural Gas Professional Committee of China Petroleum Society, 2023: 551-560.
|
[11] |
王萍,樊佳勇,韩成福,等. 长庆油田区块井眼尺寸效应与井壁稳定性分析[J]. 中国科技论文,2023,18(1):91–96.
WANG Ping, FAN Jiayong, HAN Chengfu, et al. Analysis of wellbore size effect and wellbore stability in Changqing Oilfield block[J]. China Sciencepaper, 2023, 18(1): 91–96.
|
[12] |
张建兵,刘歆,吕祥鸿,等. 套管尺寸偏差与挤毁强度关系的新认识[J]. 石油钻探技术,2010,38(3):70–74.
ZHANG Jianbing, LIU Xin, LYU Xianghong, et al. New understanding of the relation between casing dimensional variation and collapse resistance strength[J]. Petroleum Drilling Techniques, 2010, 38(3): 70–74.
|
[13] |
张茂林,张伟,王雷,等. 深井超深井大尺寸井眼钻井提速技术应用[J]. 西部探矿工程,2024,36(2):69–72.
ZHANG Maolin, ZHANG Wei, WANG Lei, et al. Application of speed boosting technology in large hole drilling of deep and ultra deep wells[J]. West-China Exploration Engineering, 2024, 36(2): 69–72.
|
[14] |
王志伟. 中石油固井技术进展研究[J]. 西部探矿工程,2021,33(6):34–35.
WANG Zhiwei. Research on the progress of CNPC cementing technology[J]. West-China Exploration Engineering, 2021, 33(6): 34–35.
|
[15] |
汪海阁,葛云华,石林. 深井超深井钻完井技术现状、挑战和“十三五”发展方向[J]. 天然气工业,2017,37(4):1–8.
WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8.
|
[16] |
盛勇,刘川福,赵亮,等. 塔里木盆地HT区块难钻白云岩地层提速技术[J]. 化学工程与装备,2023(5):75–77.
SHENG Yong, LIU Chuanfu, ZHAO Liang, et al. Speed raising technology for difficult to drill dolomite formation in HT Block of Tarim Basin[J]. Chemical Engineering & Equipment, 2023(5): 75–77.
|
[17] |
张银涛,刘正文,袁敬一,等. 主成分分析在塔里木盆地哈拉哈塘二叠系火成岩岩性识别中的应用[J]. 能源技术与管理,2020,45(3):174–176.
ZHANG Yintao, LIU Zhengwen, YUAN Jingyi, et al. Application of principal component analysis in lithologic identification of Permian igneous rocks in Halahatang, Tarim Basin[J]. Energy Technology and Management, 2020, 45(3): 174–176.
|
[18] |
石希天,肖铁,雷万能,等. 塔里木奥陶系碳酸盐岩敏感性储层控压钻井技术应用[J]. 钻采工艺,2010,33(6):130–131.
SHI Xitian, XIAO Tie, LEI Wanneng, et al. Application of MPD technology in Ordovician carbonate sensitive reservoir in Tarim Oilfield[J]. Drilling & Production Technology, 2010, 33(6): 130–131.
|
[19] |
倪新锋,沈安江,乔占峰,等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏,2023,35(2):144–158.
NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2): 144–158.
|
[20] |
范翔宇,蒙承,张千贵,等. 超深地层井壁失稳理论与控制技术研究进展[J]. 天然气工业,2024,44(1):159–176.
FAN Xiangyu, MENG Cheng, ZHANG Qiangui, et al. Research progress in the evaluation theory and control technology of wellbore instability in ultra-deep strata[J]. Natural Gas Industry, 2024, 44(1): 159–176.
|
[21] |
张超,俞缙,白允,等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报,2023,42(2):307–316.
ZHANG Chao, YU Jin, BAI Yun, et al. Statistical damage constitutive model of rock brittle-ductile transition based on strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 307–316.
|
[22] |
陈辰,卓毓龙,韩建文,等. 深部岩石脆延特性转化判别研究[J]. 矿业研究与开发,2016,36(4):90–93.
CHEN Chen, ZHUO Yulong, HAN Jianwen, et al. Transformation study on the brittle ductile properties of deep rock[J]. Mining Research and Development, 2016, 36(4): 90–93.
|
[23] |
SY/T 5724—2008 套管柱结构与强度设计[S].
SY/T 5724—2008 Design method of casing string strength[S].
|
[24] |
GB/T 20972.1—2007 石油天然气工业:油气开采中用于含硫化氢环境的材料:第1部分:选择抗裂纹材料的一般原则[S].
GB/T 20972.1—2007 Petroleum and natural gas industries: Material for use in H2S-containing environments in oil and gas production: Part 1: General principles for selection of cracking resistant materials[S].
|
[1] | ZHENG Deshuai. Design and Test for Rotary Slide Drilling Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 81-85. DOI: 10.11911/syztjs.2021013 |
[2] | WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011 |
[3] | LI Shuanggui, YU Yang, FAN Yanfang, ZENG Dezhi. Optimal Design of Casing Programs for Ultra-Deep Wellsin the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6-11. DOI: 10.11911/syztjs.2020002 |
[4] | CHEN Ming, HUANG Zhiyuan, MA Qingtao, LIU Yunpeng, GE Pengfei, XIA Guangqiang. Design and Drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15-20. DOI: 10.11911/syztjs.201704003 |
[5] | Yi Hao, Du Huan, Jia Xiaobin, Luo Faqiang. The Optimal Design of a Casing Program for Ultra-Deep Wells in the Tahe Oilfield and Its Periphery[J]. Petroleum Drilling Techniques, 2015, 43(1): 75-81. DOI: 10.11911/syztjs.201501013 |
[6] | Liu Biao, Bai Binzhen, Pan Lijuan, Niu Lixia, Fan Yanfang. Casing Program of Deep Well with Evaporite Bed in Tuofutai Block[J]. Petroleum Drilling Techniques, 2014, 42(4): 48-52. DOI: 10.3969/j.issn.1001-0890.2014.04.009 |
[7] | Chen Linlin, Wang Yongji, Li Ruiying. Design and Drilling of Horizontal Well Yuanping 1 with Long Lateral Section[J]. Petroleum Drilling Techniques, 2013, 41(6): 115-119. DOI: 10.3969/j.issn.1001-0890.2013.06.023 |
[8] | Ge Pengfei, Ma Qingtao, Zhang Dong. Optimization and Application of Ultra-Deep Well Casing Program in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(4): 83-86. DOI: 10.3969/j.issn.1001-0890.2013.04.018 |
[9] | Wen Zhiming, Li Ning, Zhang Bo. Optimal Trajectory Design of Ultra-Deep Horizontal Wells in Halahatang Block[J]. Petroleum Drilling Techniques, 2012, 40(3): 43-47. DOI: 10.3969/j.issn.1001-0890.2012.03.009 |
[10] | Casing Design and Optimization for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2011, 39(2): 16-21. DOI: 10.3969/j.issn.1001-0890.2011.02.003 |
1. |
闫冬,曾奇灯,宫汝祥,曾浩见,彭丹,刘陆芃. 沉淀粒子调驱剂的研究与应用. 石油钻探技术. 2025(01): 122-129 .
![]() | |
2. |
杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 .
![]() | |
3. |
姚光明,何刚,郭程飞,张立举. 剪切作用对乳状液性能及提高采收率的影响. 断块油气田. 2023(04): 665-671 .
![]() | |
4. |
郝文赫. 油田三类油层压裂驱油提高采收率技术及其应用. 化学工程与装备. 2023(09): 80-82 .
![]() | |
5. |
王武超,刘慧卿,东晓虎,陈掌星,李禹,王海涛. 热复合流体对堵剂颗粒沉降特性的影响. 油气地质与采收率. 2023(05): 119-129 .
![]() | |
6. |
俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .
![]() |