GENG Tie, QIU Zhengsong, TANG Zhichuan, ZHAO Xin, MIAO Hailong. The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036
Citation: GENG Tie, QIU Zhengsong, TANG Zhichuan, ZHAO Xin, MIAO Hailong. The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 82-88. DOI: 10.11911/syztjs.2019036

The Development and Application of High Temperature Resistant and Strong Inhibitive Water-Based Drilling Fluid for Deepwater Drilling

More Information
  • Received Date: November 25, 2018
  • Revised Date: February 26, 2019
  • Available Online: March 15, 2019
  • Some technical challenges are often encountered in deepwater drilling such as borehole instability through complex formations and the rheological regulation of drilling fluids under conditions of large temperature differences. Thus it is necessary to develop high temperature resistant and strong inhibitive water-based drilling fluids for deepwater drilling. Taking acrylamide, alkyl quaternary ammonium salt and 2-acrylamido-2-methylpropanesulfonic acid as the monomers, a low relative molecular mass polymer encapsulating agent for deepwater drilling was synthesized through aqueous solution polymerization. Then, taking this agent as the main treatment agent, and other treatment agents, a deepwater high temperature resistant and strong inhibitive water-based drilling fluid was prepared. The results of laboratory evaluation demonstrated that the low relative molecular mass polymer encapsulating agent has little effect on the rheology of drilling fluid and in fact exhibits strong encapsulating ability. It presents a good low temperature rheology and high temperature resistance at 160 °C. Its filtration loss at high temperature and high pressure is within 9 mL, the triple-rolling cuttings recovery rate is over 70%, and the encapsulating ability is strong enough to resist fouling of 25.0% NaCl, 0.5% CaCl2 and 8.0% poor clay, respectively. This drilling fluid has been tested in deepwater drilling in the South China Sea, and achieved good on-site application effects, which solved the technical problems such as low temperature thickening and borehole instability, and also the potential for the promotion of future applications.

  • [1]
    王松,宋明全,刘二平. 国外深水钻井液技术进展[J]. 石油钻探技术, 2009, 37(3): 8–12. doi: 10.3969/j.issn.1001-0890.2009.03.002

    WANG Song, SONG Mingquan, LIU Erping. Development of foreign deepwater drilling fluid[J]. Petroleum Drilling Techniques, 2009, 37(3): 8–12. doi: 10.3969/j.issn.1001-0890.2009.03.002
    [2]
    胡文,程玉生,李怀科,等. 深水高温高压井钻井液技术[J]. 钻井液与完井液, 2017, 34(1): 70–76. doi: 10.3969/j.issn.1001-5620.2017.01.013

    HU Wenjun, CHENG Yusheng, LI Huaike, et al. Drilling fluid technology for deepwater HTHP well[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 70–76. doi: 10.3969/j.issn.1001-5620.2017.01.013
    [3]
    罗健生,李自立,罗曼. 深水钻井液国内外发展现状[J]. 钻井液与完井液, 2018, 35(3): 1–7. doi: 10.3969/j.issn.1001-5620.2018.03.001

    LUO Jiansheng, LI Zili, LUO Man, et al. Status quo of the development of deep water drilling fluids worldwide[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 1–7. doi: 10.3969/j.issn.1001-5620.2018.03.001
    [4]
    邱正松,赵欣. 深水钻井液技术现状与发展趋势[J]. 特种油气藏, 2013, 20(3): 1–7. doi: 10.3969/j.issn.1006-6535.2013.03.001

    QIU Zhengsong, ZHAO Xin. Current status and developing trend of deepwater drilling fluid technology[J]. Special Oil & Gas Reserviors, 2013, 20(3): 1–7. doi: 10.3969/j.issn.1006-6535.2013.03.001
    [5]
    ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Mechanism and method for controlling low-temperature rheology of water-based drilling fluids in deepwater drilling[J]. Journal of Petroleum Science & Engineering, 2017, 154: 405–416.
    [6]
    刘和兴,方满宗,刘智勤,等. 南海西部陵水区块超深水井喷射下导管技术[J]. 石油钻探技术, 2017, 45(1): 10–16.

    LIU Hexing, FANG Manzong, LIU Zhiqin, et al. Jetting-based conductor running technology used in ultra-deep water well of Lingshui Block in the Western South China Sea[J]. Petroleum Drilling Techniques, 2017, 45(1): 10–16.
    [7]
    路保平,李国华. 西非深水钻井完井关键技术[J]. 石油钻探技术, 2013, 41(3): 1–6. doi: 10.3969/j.issn.1001-0890.2013.03.001

    LU Baoping, LI Guohua. Key technologies for deepwater drilling & completion in West Africa[J]. Petroleum Drilling Techniques, 2013, 41(3): 1–6. doi: 10.3969/j.issn.1001-0890.2013.03.001
    [8]
    孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术, 2015, 43(4): 1–7.

    SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–7.
    [9]
    许定江,练章华,张强,等. 深水钻完井工程设计要点分析[J]. 断块油气田, 2017, 24(1): 131–136.

    XU Dingjiang, LIAN Zhanghua, ZHANG Qiang, et al. Key points of drilling and completion design for deepwater well[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 131–136.
    [10]
    田荣剑,罗健生,李自立,等. 环保型深水水基钻井液体系的研究[J]. 科学技术与工程, 2010, 10(32): 7910–7914. doi: 10.3969/j.issn.1671-1815.2010.32.010

    TIAN Rongjian, LUO Jiansheng, LI Zili, et al. Study of the environmental-protecting water based mud in application to deep water drilling[J]. Science Technology and Engineering, 2010, 10(32): 7910–7914. doi: 10.3969/j.issn.1671-1815.2010.32.010
    [11]
    OYEDOH E, ODUMUGBO C, EBEWELE E O. Suitability of Nigerian Bentonite in drilling fluid formulation[J]. International Journal of Engineering Research in Africa, 2016, 24: 26–34. doi: 10.4028/www.scientific.net/JERA.24
    [12]
    MENG Shuai, SONG Shidi, CHE Chidong, et al. Internal flow effect on the parametric instability of deepwater drilling risers[J]. Ocean Engineering, 2018, 149: 305–312. doi: 10.1016/j.oceaneng.2017.12.031
    [13]
    WANG Xiaohui, GUAN Zhichuan, XU Yuqiang, et al. Signal analysis of acoustic gas influx detection method at the bottom of marine riser in deepwater drilling[J]. Journal of Process Control, 2018, 66: 23–38. doi: 10.1016/j.jprocont.2017.12.008
    [14]
    赵欣,邱正松,张永君,等. 复合盐层井壁失稳机理及防塌钻井液技术[J]. 中南大学学报(自然科学版), 2016, 47(11): 3832–3838.

    ZHAO Xin, QIU Zhengsong, ZHANG Yongjun, et al. Wellbore instability mechanism and wellbore stabilizing drilling fluid technique for drilling compound salt formation[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3832–3838.
    [15]
    钟汉毅,邱正松,黄维安, 等. 聚胺高性能水基钻井液特性评价及应用[J]. 科学技术与工程, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Properties evaluation and application of polyamine high performance water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(10): 2803–2807. doi: 10.3969/j.issn.1671-1815.2013.10.036
    [16]
    李怀科,张伟,马跃. 深水窄密度窗口钻井液技术改进及现场应用[J]. 油田化学, 2018, 35(2): 209–213.

    LI Huaike, ZHANG Wei, MA Yue. Technology improvement and field application of deep water drilling fluid for narrow drilling window[J]. Oilfield Chemistry, 2018, 35(2): 209–213.
    [17]
    高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010

    GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010
    [18]
    王培义,马鹏鹏,张贤印,等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术, 2017, 45(4): 27–32.

    WANG Peiyi, MA Pengpeng, ZHANG Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–32.
    [19]
    徐加放,丁廷稷,张瑞,等. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018, 39(5): 597–603.

    XU Jiafang, DING Tingji, ZHANG Rui, et al. Development and performance evaluation of thermo-sensitive polymer for low-temperature rheology control of water-based drilling fluid[J]. Acta Petrolei Sinica, 2018, 39(5): 597–603.
    [20]
    LU Y H, CHEN Mingqing, JIN Yuanlin, et al. The Development and application of an environmentally friendly encapsulator EBA-20[J]. Petroleum Science and Technology, 2012, 30(21): 2227–2235. doi: 10.1080/10916466.2011.569813
    [21]
    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Successful application of unique polyamine high performance waterbased drilling fluid in Bohai Bay shale formations[R]. IPTC-16721-MS, 2013.
    [22]
    李怀科,罗健生,李自立,等. 深水用低分子量包被剂PF-UCAP的合成及性能评价[J]. 石油化工应用, 2013, 32(9): 91–93. doi: 10.3969/j.issn.1673-5285.2013.09.023

    LI Huaike, LUO Jiansheng, LI Zili, et al. Research and evacuation of a low molecular encapsulator PF-UCAP for deep-water[J]. Petro-chemical Industry Application, 2013, 32(9): 91–93. doi: 10.3969/j.issn.1673-5285.2013.09.023
    [23]
    钟汉毅. 聚胺强抑制剂研制及其作用机理研究[D]. 青岛: 中国石油大学(华东), 2012.

    ZHONG Hanyi. Development and mechanism study on high performance polyamine inhibitor in water-based drilling fluid[D]. Qingdao: China University of Petroleum(Huadong), 2012.
  • Related Articles

    [1]YANG Kaiji, ZHANG Ying, WEI Qiang, CHENG Yan, LIU Quangang. Development and Performance Evaluation of Emulsion Polymer with Temperature Resistance and Salt Resistance Used in Offshore Oilfield Development[J]. Petroleum Drilling Techniques, 2024, 52(4): 118-127. DOI: 10.11911/syztjs.2024010
    [2]ZHANG Hui, TAN Shaoxu, HUO Tongda, ZHAO Chenglong, ZHOU Zhankai, PEI Bailin. Integrated Completion Technology of Water and Sand Control in Reservoirs with Extra-High Porosity and Permeability in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(1): 107-113. DOI: 10.11911/syztjs.2024015
    [3]QI Xiao, ZHANG Zhang, LI Dong, YIN Lu, YU Yang. Evaluation of Fracturing Effects in Offshore Sandstone Reservoirs Based on Array Acoustic Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128-134. DOI: 10.11911/syztjs.2023069
    [4]YANG Shukun, GUO Hongfeng, HAO Tao, ZHAO Guangyuan, DU Xiaoxia, LI Xiang. Development and Performance Evaluation of an Electrically Controlled Intelligent Water Control and Oil Recovery Tool for Offshore Oilfields[J]. Petroleum Drilling Techniques, 2022, 50(5): 76-81. DOI: 10.11911/syztjs.2022086
    [5]HE Haifeng. Separate Layer Sand Control and Oil Production Technology in Offshore Unconsolidated Sandstone Reservoirs of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 99-104. DOI: 10.11911/syztjs.2021027
    [6]GUO Yi, GAO Xiaofei, YI Huian, DAI Ling, XU Liqian, LIU Jia. Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93-98. DOI: 10.11911/syztjs.2021120
    [7]YU Meng, TIE Leilei, LI Xiang, LIU Wenhui. Development of Dispersed Copolymer Particle System for Profile Control in Offshore Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 118-122. DOI: 10.11911/syztjs.2020019
    [8]SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087
    [9]LIU Honglan. Development and Application of a Hydraulic Control-Type Safety Annulus Packer for Water Injectors in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2017, 45(5): 103-107. DOI: 10.11911/syztjs.201705018
    [10]YANG Yang, CAO Yanfeng, SUI Xianfu, YU Jifei, OUYANG Tiebing. Optimizal Method of Offshore Oil Artificial Lift Modes Based on Hierarchical Grade-Weighted Method[J]. Petroleum Drilling Techniques, 2016, 44(1): 73-78. DOI: 10.11911/syztjs.201601014
  • Cited by

    Periodical cited type(2)

    1. 王超,李勇,石美玉,沈佳成. 基于QT的浅水集成式设备软件设计. 电脑编程技巧与维护. 2025(04): 36-39+62 .
    2. 张学敏,张雪茹,李厚补,齐国权,高雄. 拉伸载荷下非金属敷缆复合连续油管力学行为模拟研究. 石油钻探技术. 2025(01): 94-101 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (5474) PDF downloads (92) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return