SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087
Citation: SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087

Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields

More Information
  • Received Date: November 04, 2018
  • Revised Date: September 01, 2019
  • Available Online: September 08, 2019
  • There are technical challenges in the safety and high-efficiency stimulation by blasting fracturing in offshore oilfields, and in response a high temperature, low firepower and low burning rate propellant has been developed, and in addition, we have established a deflagration fracturing simulation model. By utilizing safety string components and conducting safety calibration, a wellhead pressure relief method for the offshore oilfields has been formed. Through the enhanced software simulation and combined acidizing operation, it can improve the technical safety and enhance the stimulation effect, so as to form the deflagration fracturing technology for offshore oilfields. This technology has been tested in 8 wells in offshore oilfields. In those offshore fields, the peak pressure of the test well was 22.4–71.3 MPa. There was no safety problem in the string, and the average daily oil increment per well was up to 43.1 m3/d. The research showed that this deflagration fracturing technology had good adaptability in offshore oilfields, which is suitable for a variety of well conditions, with the advantages of safety control and high-efficiency stimulation technology in deflagration fracturing in offshore oilfield, it can improve the application safety and optimize the results from stimulation.

  • [1]
    路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [2]
    赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术, 2018, 46(4): 96–103.

    ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103.
    [3]
    金军, 王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田, 2018, 25(3): 363–366.

    JIN Jun, WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.
    [4]
    秦发动, 吴晋军. 我院高能气体压裂技术十年发展综述[J]. 西安石油学院学报(自然科学版), 1997, 12(3): 14–17, 52.

    QIN Fadong, WU Jinjun. Development of high energy gas fracturing (HEGF) in the past ten years[J]. Journal of Xi’an Petroleum Institute(Natural Science Edition), 1997, 12(3): 14–17, 52.
    [5]
    刘发喜, 秦发动. 高能气体压裂施工工艺及其发展趋势[J]. 石油钻采工艺, 1993, 15(2): 63–69, 75.

    LIU Faxi, QING Fadong. Construction technology and development tendency of high energy gas fracturing technique[J]. Oil Drilling & Production Technology, 1993, 15(2): 63–69, 75.
    [6]
    蒲春生, 周少伟. 高能气体压裂最佳火药量理论计算[J]. 断块油气田, 2008, 15(1): 55–57.

    PU Chunsheng, ZHOU Shaowei. Effective range of gunpowder amount in high energy gas fracture[J]. Fault-Block Oil & Gas Field, 2008, 15(1): 55–57.
    [7]
    邵重斌, 樊学忠, 吴淑新. 高能气体压裂技术和油层物性关系的研究[J]. 火炸药学报, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028

    SHAO Chongbin, FAN Xuezhong, WU Shuxin. Study on the relationship between the high energy gas-fracture and the physical properties of oil layer[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028
    [8]
    张发展, 高志光. 双级高能气体压裂技术及应用效果分析[J]. 钻采工艺, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017

    ZHANG Fazhan, GAO Zhiguang. Analysis of applied effects for two stage high energy gas fracturing[J]. Drilling & Production Technology, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017
    [9]
    孙林, 宋爱莉, 易飞, 等. 爆压酸化技术在中国海上低渗油田适应性分析[J]. 钻采工艺, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17

    SUN Lin, SONG Aili, YI Fei, et al. Analysis of deflagrate fracturing technology adaptability in China offshore low permeability of oilfield[J]. Drilling & Production Technology, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17
    [10]
    蒲春生, 秦文龙, 邹鸿江, 等. 高能气体压裂增产措施中一氧化碳气体生成机制[J]. 石油学报, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022

    PU Chunsheng, QIN Wenlong, ZOU Hongjiang, et al. Formation mechanism of carbon monoxide in high-energy gas fracturing[J]. Acta Petrolei Sinica, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022
    [11]
    秦文龙, 蒲春生, 肖曾利, 等. 高能气体压裂中CO气生成及井口聚散规律研究[J]. 油田化学, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010

    QIN Wenlong, PU Chunsheng, XIAO Zengli, et al. Formation and accumulation/disappearance of carbon monoxide around wellhead in course of high energy gas fracturing[J]. Oilfield Chemistry, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010
    [12]
    秦文龙, 蒲春生. 高能气体压裂中CO气体生成富集规律[J]. 石油钻采工艺, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013

    QIN Wenlong, PU Chunsheng. CO gas generation and accumulation laws in high-energy gas fracturing[J]. Oil Drilling & Production Technology, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013
    [13]
    吴飞鹏, 蒲春生, 陈德春, 等. 高能气体压裂合理装药量的设计与应用[J]. 石油钻探技术, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019

    WU Feipeng, PU Chunsheng, CHEN Dechun, et al. Design and application of a reasonable charge of high-energy gas fracturing[J]. Petroleum Drilling Techniques, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019
    [14]
    王爱华, 李璗, 赵锋洛, 等. 用高能气体压裂模型研究裂缝条数[J]. 断块油气田, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020

    WANG Aihua, LI Dang, ZHAO Fengluo, et al. The study of number of fractures using high energy gas fracturing model[J]. Fault-Block Oil & Gas Field, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020
    [15]
    吴晋军, 廖红伟, 张杰. 水平井液体药高能气体压裂技术试验应用研究[J]. 钻采工艺, 2007, 30(1): 51–53.

    WU Jinjun, LIAO Hongwei, ZHANG Jie. Study and application of liquid power high energy gas fracturing technology in horizontal well[J]. Drilling & Production Technology, 2007, 30(1): 51–53.
    [16]
    孙林, 黄波, 熊培祺. 爆燃压裂起裂模型常见问题分析与修正[J]. 中国海上油气, 2019, 31(1): 133–138.

    SUN Lin, HUANG Bo, XIONG Peiqi. Common problems analysis and correction of deflagration fracturing crack initiation model[J]. China Offshore Oil and Gas, 2019, 31(1): 133–138.
    [17]
    黄波, 熊培祺, 孙林. 海上砂岩油藏爆燃压裂数值模拟技术研究[J]. 中国科技论文, 2018, 13(11): 1317–1324.

    HUANG Bo, XIONG Peiqi, SUN Lin. Numerical simulation technology of deflagration fracturing in offshore sandstone reservoir[J]. China Sciencepaper, 2018, 13(11): 1317–1324.
    [18]
    孙林, 杨万有, 易飞, 等. 筛管完井爆燃压裂技术可行性研究[J]. 特种油气藏, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031

    SUN Lin, YANG Wanyou, YI Fei, et al. Feasibility research on liner-completion deflagration fracturing technique[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031
    [19]
    张杰, 黄利平, 周际永, 等. 筛管完井高能气体压裂模拟实验研究[J]. 钻采工艺, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21

    ZHANG Jie, HUANG Liping, ZHOU Jiyong, et al. Simulation study on high energy gas fracturing in screen completed wells[J]. Drilling & Production Technology, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21
  • Cited by

    Periodical cited type(18)

    1. 钟锋,侯博,孙欢,朱明明,刘振,王步宽,李金爽. 苏里格区域抗高温滤失型纤维堵漏技术研究与应用. 石油化工应用. 2024(05): 79-85 .
    2. 郭明红,文飞,常春来,谭春,崔节磊,钟新新. 高滤失固结堵漏技术在足203H5平台的应用. 石油地质与工程. 2024(03): 108-112 .
    3. 王立锋. 查302井分级承压固结堵漏技术. 钻井液与完井液. 2024(05): 617-621 .
    4. 欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 .
    5. 刘金华. 顺北油气田二叠系火成岩漏失分析及堵漏技术. 钻探工程. 2023(02): 64-70 .
    6. 李天乐,庞少聪,赵洛,杨超岚,安玉秀. 近十年纳微米堵漏剂研究进展. 应用化工. 2023(07): 2107-2111 .
    7. 彭力,计磊,邱正松,臧晓宇,张现斌. 新型抗高温凝胶堵漏剂的制备与评价. 能源化工. 2023(05): 64-69 .
    8. 杜昊,李丽华,马诚,杨超,王晨,张宏. 架桥封堵-热致固结高温堵漏体系研究. 辽宁石油化工大学学报. 2023(06): 17-21 .
    9. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看
    10. 王兆永. 超高温高密度防漏堵漏水泥浆技术. 石油化工应用. 2022(12): 38-41+47 .
    11. 方俊伟,贾晓斌,刘文堂,乐明. ZYSD高失水固结堵漏技术在顺北5-9井中的应用. 钻井液与完井液. 2021(01): 74-78 .
    12. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    13. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
    14. 赵福豪,黄维安. 钻井液防漏堵漏材料研究进展. 复杂油气藏. 2020(04): 96-100 .
    15. 邹春,兰凯,王爱宽,刘香峰,孔华. 涪陵页岩气井水平段一趟钻技术实践与认识. 内蒙古石油化工. 2019(06): 64-67 .
    16. 樊好福. 页岩气钻完井配套技术集成研究与应用. 探矿工程(岩土钻掘工程). 2019(08): 15-22 .
    17. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 .
    18. 韩成,黄凯文,罗鸣,刘贤玉,邓文彪. 南海莺琼盆地高温高压井堵漏技术. 石油钻探技术. 2019(06): 15-20 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return