ZHANG Xuemin, ZHANG Xueru, LI Houbu, et al. Simulation study on mechanical behavior of a nonmetallic composite coiled tubing with cable laying under tension load [J]. Petroleum Drilling Techniques, 2025, 53(1):94−101. DOI: 10.11911/syztjs.2025003
Citation: ZHANG Xuemin, ZHANG Xueru, LI Houbu, et al. Simulation study on mechanical behavior of a nonmetallic composite coiled tubing with cable laying under tension load [J]. Petroleum Drilling Techniques, 2025, 53(1):94−101. DOI: 10.11911/syztjs.2025003

Simulation Study on Mechanical Behavior of a Nonmetallic Composite Coiled Tubing with Cable Laying under Tension Load

More Information
  • Received Date: December 27, 2023
  • Revised Date: January 06, 2025
  • Available Online: January 20, 2025
  • Nonmetallic composite coiled tubing with cable laying is subjected to tension load due to its self-weight in the process of frequent lifting and lowering of wells for oil extraction, and clarifying the mechanical behavior of the pipe under this load can provide guidance for the safe service of the pipe. A three-dimensional numerical model of nonmetallic composite coiled tubing with cable laying was constructed by finite element software, and the mechanical behavior of the pipe under tension load and the mechanical response of each structural layer were analyzed. The influence of cable laying process parameters, such as cable winding and distribution angles, on the mechanical properties of the pipe was explored. The results indicate that under tension load, the stresses in all structural layers of the pipe with cable laying exhibit a spiral distribution because of cable winding. When the pipe is stretched to failure, it undergoes three stages: elastic deformation, transition stage, and yield deformation. Meanwhile, the cables are in a state of small plastic uniform deformation. Reducing the cable winding angle can enhance the elastic modulus and axial load-bearing capacity of the pipe with cable laying. However, it may cause the pipe to enter into the transition stage prematurely and then yield in advance. The cable distribution angle has a minimal impact on the mechanical properties of the pipe. Therefore, when this type of pipe is manufactured, special emphasis should be placed on the cable winding angle, as this parameter is highly correlated with the mechanical properties of the pipe under tension loads.

  • [1]
    刘耀民,孙文盛,鲜林云. 敷缆连续管在油田电潜泵采油技术中的应用[J]. 焊管,2022,45(3):61–64.

    LIU Yaomin, SUN Wensheng, XIAN Linyun. Application of coiled tubing with cables in oilfield electric submersible pump oil production technology[J]. Welded Pipe and Tube, 2022, 45(3): 61–64.
    [2]
    李昂,杨万有,郑春峰,等. 海上油田采油技术创新实践及发展方向[J]. 石油钻探技术,2024,52(6):75–85.

    LI Ang, YANG Wanyou, ZHENG Chunfeng, et al. Innovation practice and prospect of oil production technologies in offshore oil-fields[J]. Petroleum Drilling Techniques, 2024, 52(6): 75–85.
    [3]
    李厚补,张学敏,马相阳,等. 井下用非金属复合材料连续管研究进展[J]. 石油管材与仪器,2021,7(2):9–14.

    LI Houbu, ZHANG Xuemin, MA Xiangyang, et al. Research progress on non-metallic coiled composite pipes[J]. Petroleum Tubular Goods & Instruments, 2021, 7(2): 9–14.
    [4]
    CHEN Wei, XIONG Haichao, BAI Yong. Failure behavior analysis of steel strip–reinforced flexible pipe under combined tension and internal pressure[J]. Journal of Thermoplastic Composite Materials, 2020, 33(6): 727–753. doi: 10.1177/0892705718811405
    [5]
    祖世强,熊巍,张宝辉,等. 敷缆连续油管无杆采油试验及分析[J]. 内蒙古石油化工,2019,45(9):10–12.

    ZU Shiqiang, XIONG Wei, ZHANG Baohui, et al. Test and analysis of rodless oil recovery of coiled tubing[J]. Inner Mongolia Petrochemical Industry, 2019, 45(9): 10–12.
    [6]
    侯伟,刘传友,浮昀,等. 复合连续敷缆管采油技术探索实践[C]//第十七届宁夏青年科学家论坛石油石化专题论坛论文集. 银川:宁夏回族自治区科学技术协会,2021:197-199.

    HOU Wei, LIU Chuanyou, FU Yun, et al. Exploration and practice of composite continuous cable pipe oil production technology[C]//Proceedings of the 17th Ningxia Young Scientists Forum Petroleum and Petrochemical Special Forum. Yinchuan: Ningxia Association for Science and Technology, 2021: 197-199.
    [7]
    WANG Baodong, LIU Xiaoben, ZHANG Hong, et al. A combined experimental and numerical simulation approach for burst pressure analysis of fiber-reinforced thermoplastic pipes[J]. Ocean Engineering, 2021, 236: 109517. doi: 10.1016/j.oceaneng.2021.109517
    [8]
    WANG Yangyang, LOU Min, TONG Bing, et al. Mechanical properties study of reinforced thermoplastic pipes under a tensile load[J]. China Ocean Engineering, 2020, 34(6): 806–816. doi: 10.1007/s13344-020-0073-x
    [9]
    KAMP G P, BETTS M. Development of a power and data transmission thermoplastic composite coiled tubing for electric drilling[R]. SPE 60730, 2000.
    [10]
    李帅,袁文才,张友军,等. 智能非金属敷缆连续管的夹持力学性能研究[J]. 化学工程与装备,2022(12):28–30.

    LI Shuai, YUAN Wencai, ZHANG Youjun, et al. Study on the clamping mechanical properties of non-metallic intelligent coiled tubing[J]. Chemical Engineering & Equipment, 2022(12): 28–30.
    [11]
    宿振国. 敷缆复合材料连续管结构设计与性能评测研究[D]. 青岛:中国石油大学(华东),2014.

    SU Zhenguo. Study on structural design and performance evaluation of composite coiled tubing with cables[D]. Qingdao: China University of Petroleum(East China), 2014.
    [12]
    丁楠,李厚补,古兴瑾,等. 非金属智能连续管拉伸层力学特性研究[J]. 石油机械,2020,48(11):119–125.

    DING Nan, LI Houbu, GU Xingjin, et al. Study on the mechanical properties of the tensile layer of non-metallic intelligent coiled tubing[J]. China Petroleum Machinery, 2020, 48(11): 119–125.
    [13]
    夏和萍. 热塑性复合材料海洋柔性管内压承载力研究[D]. 青岛:中国石油大学(华东),2021.

    XIA Heping. On internal pressure capacity of thermoplastic composite pipes[D]. Qingdao: China University of Petroleum(East China), 2021.
    [14]
    KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515–529. doi: 10.1002/nme.1620140405
    [15]
    白勇,张尹,杨红刚. 纤维绳缠绕增强复合管拉伸有限元分析[J]. 低温建筑技术,2015,37(1):61–63.

    BAI Yong, ZHANG Yin, YANG Honggang. Finite element analysis of fiber rope winding reinforced composite pipe tensile[J]. Low Temperature Architecture Technology, 2015, 37(1): 61–63.
    [16]
    张学敏,周腾,李厚补,等. 涤纶纤维增强聚乙烯复合管承压性能模拟[J]. 工程塑料应用,2020,48(8):118–122.

    ZHANG Xuemin, ZHOU Teng, LI Houbu, et al. Simulation of pressure-bearing performance of polyester fiber reinforced polyethylene composite pipes[J]. Engineering Plastics Application, 2020, 48(8): 118–122.
    [17]
    YUE Qianjin, LU Qingzhen, YAN Jun, et al. Tension behavior prediction of flexible pipelines in shallow water[J]. Ocean Engineering, 2013, 58: 201–207. doi: 10.1016/j.oceaneng.2012.11.002
    [18]
    周腾. 纤维增强塑料复合管关键承载性能仿真模拟[D]. 西安:长安大学,2021.

    ZHOU Teng. Simulation of the key bearing performance of fiber reinforced plastic composite pipes[D]. Xi’an: Chang’an University, 2021.
    [19]
    张尹. 纤维缠绕增强复合管在轴对称荷载下的力学行为研究[D]. 杭州:浙江大学,2015.

    ZHANG Yin. Investigation on mechanisms of filament-wound fiber-reinforced composite pipe under axisymmetric loads[D]. Hangzhou: Zhejiang University, 2015.
    [20]
    张杰,梁博丰. 复杂载荷下钢带缠绕增强复合管力学特性[J]. 复合材料学报,2021,38(1):246–254.

    ZHANG Jie, LIANG Bofeng. Mechanical properties of reinforced composite pipe wound with steel strip under complex loads[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 246–254.
    [21]
    邹宵. 海洋复合软管结构设计的关键力学问题研究[D]. 大连:大连理工大学,2021.

    ZOU Xiao. Research on key mechanical problems of marine composite hose structure design[D]. Dalian: Dalian University of Technology, 2021.
    [22]
    黄婷. 钢丝缠绕增强塑料复合管的力学性能分析与研究[D]. 杭州:浙江大学,2014.

    HUANG Ting. Study on mechanisms of plastic pipe reinforced by helically cross-winding steel wire[D]. Hangzhou: Zhejiang University, 2014.
    [23]
    刘婷. 钢带缠绕复合管力学性能及可靠性分析[D]. 杭州:浙江大学,2018.

    LIU Ting. Mechanical behaviors and reliability analysis of steel strip reinforced flexible pipes[D]. Hangzhou: Zhejiang University, 2018.
    [24]
    XU Yuxin, BAI Yong, FANG Pan, et al. Structural analysis of fibreglass reinforced bonded flexible pipe subjected to tension[J]. Ships and Offshore Structures, 2019, 14(7): 777–787. doi: 10.1080/17445302.2018.1564534
    [25]
    冯德华,綦耀光,余焱群. 海洋纤维增强复合柔性管拉伸性能[J]. 中国石油大学学报(自然科学版),2021,45(4):146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018

    FENG Dehua, QI Yaoguang, YU Yanqun. Tensile properties of marine fiber reinforced composite flexible pipes[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 146–152. doi: 10.3969/j.issn.1673-5005.2021.04.018
    [26]
    陈伟. 涉内压荷载下钢带缠绕增强复合管力学性能分析[D]. 杭州:浙江大学,2018.

    CHEN Wei. Research on the mechanical properties of steel strip reinforced flexible pipe under internal pressure related load[D]. Hangzhou: Zhejiang University, 2018.
  • Related Articles

    [1]MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031
    [2]WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060
    [3]ZHANG Hao, BI Xueliang, LIU Weikai, XU Yueqing, SONG Mingxing, SHAO Shuai. Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128
    [4]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [5]WANG Weijia. The Technology of Long Cable Snubbing Fishing through Coiled Tubing in Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2018, 46(3): 109-113. DOI: 10.11911/syztjs.2018057
    [6]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [7]Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021
    [8]Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023
  • Cited by

    Periodical cited type(2)

    1. 刘小年,刘燕云,刘豪,陈少奇,徐单廷,于立晨,蒋文明. 海上油田钻屑远距离传输摩阻计算研究. 化工科技. 2024(03): 46-53 .
    2. 陈强,张忠亮,赖辰熙,李斌,何兵,郭磊,冯永存. 水基钻屑固液分离室内实验研究. 石化技术. 2024(10): 61-63 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (110) PDF downloads (25) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return