Citation: | WANG Xiaoyu, REN Haojie, GUANG Yichu, et al. Experimental study on improving condensate oil recovery by CO2 huff and puff in condensate gas reservoirs [J]. Petroleum Drilling Techniques, 2025, 53(1):86−93. DOI: 10.11911/syztjs.2025011 |
The application of CO2 injection to improve the recovery of natural gas and condensate oil is still in the development stage. The CO2 injection mode, injection time, and the interaction mechanism between CO2 and reservoir fluid are not clear. Through the constant volume depletion experiment of CO2 injection into condensate gas reservoirs and the measurement experiment of oil-gas interfacial tension, a stepwise incremental CO2 huff and puff method was proposed on the basis of determining the maximum retrograde condensate pressure, liquid volume, and CO2-condensate oil interaction mode. In addition, the huff and puff effect and CO2 storage ratio were evaluated by full diameter core experiment. The results show that after the CO2 is injected into the condensate gas reservoir, the dew point pressure, the maximum retrograde condensate pressure, and the condensate oil volume are continuously reduced, and the critical point moves to the lower left corner. The two-phase envelope area shrinks inward, and the fluid components become lighter. The phase mixing between CO2 and condensate oil can be achieved gradually only after multiple contacts. A higher CO2 pressure indicates fewer contacts required to achieve the phase mixing. The condensate oil recovery after four rounds of incremental CO2 huff and puff is 1.2%, 14.4%, 25.8%, and 3.6%, respectively, which is 45.0 percentage points higher than that after natural depletion. The proportion of CO2 storage decreases with the increase in huff and puff times, which are 82.2%, 72.1%, 46.4%, and 9.2%, respectively. CO2 huff and puff times should be controlled within 3 to achieve the optimal effect. The CO2 huff and puff effect is mainly affected by CO2 injection pressure and core system pressure. When the CO2 injection pressure is lower than the minimum miscible pressure (MMP), it is not conducive to CO2 huff and puff and storage. The research results provide a reference for the efficient development of condensate gas reservoirs and the improvement of retrograde condensate damage.
[1] |
李跃林,赵晓波,王雯娟,等. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响:以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学,2018,29(1):140–150.
LI Yuelin, ZHAO Xiaobo, WANG Wenjuan, et al. Influence of water vaporization and condensate bank near wellbore on well deliverability damage of high temperature gas reservoir at low pressure stage: a case study of Yacheng 13-1 high temperature gas-condensate reservoir[J]. Natural Gas Geoscience, 2018, 29(1): 140–150.
|
[2] |
李鹏飞,王爱方,张成林,等. 注CO2改善页岩凝析气藏反凝析伤害效果评价[J]. 大庆石油地质与开发,2023,42(6):151–158.
LI Pengfei, WANG Aifang, ZHANG Chenglin, et al. Effect evaluation of CO2 injection on mitigat retrograde condensate damage of condensate gas in shale gas reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6): 151–158.
|
[3] |
江同文,孙龙德,谢伟,等. 凝析气藏循环注气三元开发机理与提高凝析油采收率新技术[J]. 石油学报,2021,42(12):1654–1664. doi: 10.7623/syxb202112010
JIANG Tongwen, SUN Longde, XIE Wei, et al. Three-element development mechanism of cyclic gas injection in condensate gas reservoirs and a new technique of enhancing condensate oil recovery[J]. Acta Petrolei Sinica, 2021, 42(12): 1654–1664. doi: 10.7623/syxb202112010
|
[4] |
汤勇,杜志敏,孙雷,等. 解除低渗凝析气井近井污染研究现状及进展[J]. 天然气工业,2007,27(6):88–91. doi: 10.3321/j.issn:1000-0976.2007.06.026
TANG Yong, DU Zhimin, SUN Lei, et al. Current status and future development of the study on removal of near-wellbore damage in low-permeability gas condensate wells[J]. Natural Gas Industry, 2007, 27(6): 88–91. doi: 10.3321/j.issn:1000-0976.2007.06.026
|
[5] |
MOHAMMED N, ABBAS A J, ENYI G C, et al. Alternating N2 gas injection as a potential technique for enhanced gas recovery and CO2 storage in consolidated rocks: An experimental study[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(8): 3883–3903. doi: 10.1007/s13202-020-00935-z
|
[6] |
李邦国,侯家鵾,雷兆丰,等. 超临界CO2萃取页岩油效果评价及影响因素分析[J]. 石油钻探技术,2024,52(4):94–103.
LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94–103.
|
[7] |
SETEYEOBOT I, JAMIOLAHMADY M, JAEGER P, et al. An experimental study of the effects of CO2 injection on gas/condensate recovery and CO2 storage in gas-condensate reservoirs[R]. SPE 206117, 2021.
|
[8] |
JESSEN K, ORR F M. Gas cycling and the development of miscibility in condensate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2004, 7(5): 334–341.
|
[9] |
GACHUZ-MURO H, GONZALEZ-VALTIERRA B, LUNA-ROJERO E, et al. Laboratory tests with CO2, N2 and lean natural gas in a naturally fractured gas-condesate reservoir under HP/HT conditions[R]. SPE 142855, 2011.
|
[10] |
MOHEBBINIA S, SEPEHRNOORI K, JOHNS R T. Four-phase equilibrium calculations of carbon dioxide/hydrocarbon/water systems with a reduced method[J]. SPE Journal, 2013, 18(5): 943–951. doi: 10.2118/154218-PA
|
[11] |
冯文彦. 超临界凝析气藏开发后期注CO2提高采收率:以北部湾盆地福山凹陷莲4断块为例[J]. 天然气工业,2016,36(7):57–62. doi: 10.3787/j.issn.1000-0976.2016.07.008
FENG Wenyan. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: a case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin[J]. Natural Gas Industry, 2016, 36(7): 57–62. doi: 10.3787/j.issn.1000-0976.2016.07.008
|
[12] |
ABBASOV Z Y, FATALIYEV V M, HAMIDOV N N. The solubility of gas components and its importance in gas-condensate reservoir development[J]. Petroleum Science and Technology, 2017, 35(3): 249–256. doi: 10.1080/10916466.2016.1251459
|
[13] |
HOU Dali, JIA Ying, SHI Yunqing, et al. Experimental study on the effect of CO2 on phase behavior characteristics of condensate gas reservoir[J]. Journal of Chemistry, 2020, 2020: 6041081.
|
[14] |
SY/T 5154—2014 油气藏流体取样方法[S].
SY/T 5154—2014 Sampling procedures for hydrocarbon reservoir fluids[S].
|
[15] |
GB/T 26981—2020 油气藏流体物性分析方法[S].
GB/T 26981—2020 Analysis method for reservoir fluid physical properties[S].
|
[16] |
WANG Jinsheng, RYAN D, SZABRIES M, et al. A study for using CO2 to enhance natural gas recovery from tight reservoirs[J]. Energy & Fuels, 2019, 33(5): 3821–3827.
|
[17] |
胡伟,吕成远,伦增珉,等. 致密多孔介质中凝析气定容衰竭实验及相态特征[J]. 石油学报,2019,40(11):1388–1395. doi: 10.7623/syxb201911009
HU Wei, LYU Chengyuan, LUN Zengmin, et al. Constant volume depletion experiment and phase characteristics of condensate gas in dense porous media[J]. Acta Petrolei Sinica, 2019, 40(11): 1388–1395. doi: 10.7623/syxb201911009
|
[18] |
李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38–44. doi: 10.11911/syztjs.2022006
LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2): 38–44. doi: 10.11911/syztjs.2022006
|
[19] |
陈雷,罗辑,饶华文,等. 凝析气藏开发中后期注气提高采收率[J]. 新疆石油地质,2019,40(1):98–102.
CHEN Lei, LUO Ji, RAO Huawen, et al. et al gas injection EOR at mid-late development stage in condensate gas reservoirs[J]. Xinjiang Petroleum Geology, 2019, 40(1): 98–102.
|
[20] |
LI Ligong, LI Chao, KANG Tianhe. Adsorption/desorption behavior of CH4 on shale during the CO2 Huff-and-Puff process[J]. Energy & Fuels, 2019, 33(6): 5147–5152.
|
[21] |
LIU Jun, YAO Yanbin, LIU Dameng, et al. Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale[J]. International Journal of Coal Geology, 2017, 179: 211–218. doi: 10.1016/j.coal.2017.06.006
|
[1] | GAO Hangxian, LI Zhenxiang, HU Yanfeng. Key Drilling Technologies for Increasing ROP in Ultra-Deep Well Yuanshen 1[J]. Petroleum Drilling Techniques, 2024, 52(3): 28-33. DOI: 10.11911/syztjs.2024054 |
[2] | WANG Chunsheng, FENG Shaobo, ZHANG Zhi, ZHOU Bo, LYU Xiaogang, ZHOU Bao. Key Technologies for Drilling Design of Well Shendi Take-1[J]. Petroleum Drilling Techniques, 2024, 52(2): 78-86. DOI: 10.11911/syztjs.2024025 |
[3] | YUAN Guodong, WANG Hongyuan, CHEN Zongqi, MU Yajun, XI Baobin. Key Drilling Technologies for the Ultra-Deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21-27. DOI: 10.11911/syztjs.2020067 |
[4] | LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094 |
[5] | YE Jinlong, SHEN Jianwen, WU Yujun, DU Zhenghong, SUI Sheng, LI Lin. Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056 |
[6] | LIU Zhengli, YAN De. Key Drilling Techniques of Liwan22-1-1 Ultra-Deepwater Well in East of South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(1): 13-19. DOI: 10.11911/syztjs.2019026 |
[7] | Luo Yucai, Li Jingying, Li Zhenhao, Wang Dongming, Cheng Xiaodong. ROP Improvement Techniques Applied in Well Yangtan 1 when Drilling into a Deep Buried Hill[J]. Petroleum Drilling Techniques, 2015, 43(6): 130-134. DOI: 10.11911/syztjs.201506024 |
[8] | Li Gao, Xiao Guilin, Li Xiaolin, Li Cheng. Numerical Simulation for Cuttings Migration during Gas Drilling of Horizontal Wells[J]. Petroleum Drilling Techniques, 2015, 43(4): 66-72. DOI: 10.11911/syztjs.201504012 |
[9] | Feng Dejie, Li Guofeng, Zhao Yong. ø139.7 mm Plug-Drilling-Free Well Cementing Completion Technology[J]. Petroleum Drilling Techniques, 2014, 42(5): 131-134. DOI: 10.11911/syztjs.201405024 |
[10] | Yao Yong, Yin Zongguo, Jiao Jianfang, Guo Guangping, Hong Shaoqing. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(1): 118-122. DOI: 10.3969/j.issn.1001-0890.2013.01.023 |
1. |
冯荟锦,曹渴望,王中华. 苏东储气库大井眼定向井钻井技术研究. 石化技术. 2025(02): 301-303 .
![]() | |
2. |
史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
![]() | |
3. |
许期聪,付强,周井红,陈宽,万夫磊. 四川盆地双鱼石区块特深井井身结构设计与适用性评价研究. 钻采工艺. 2024(02): 83-92 .
![]() | |
4. |
史配铭. 榆阳区块Φ311.2 mm及以上大井眼井段钻井提速关键技术. 石油工业技术监督. 2024(06): 46-52 .
![]() | |
5. |
伍晓龙,杜垚森,王庆晓,赵远,王晓赛. 冀中坳陷区域JZ04地热勘探井施工技术. 钻探工程. 2023(01): 107-114 .
![]() | |
6. |
刘保侠,张文涛,王宗明,张锐,张鼎. 井下小尺寸水力涡轮设计与结构优化. 石油矿场机械. 2023(04): 34-40 .
![]() | |
7. |
权春阳,权迎军,种奋刚,史配铭,权洋. 陕224储气库大井眼定向井钻完井关键技术. 山东化工. 2022(05): 159-160+165 .
![]() | |
8. |
张英传,王鲁朝,宋世杰,翟育峰. 罗布莎科学钻探工程技术及应用. 西部探矿工程. 2022(06): 84-88+90 .
![]() | |
9. |
黄志远,陈思安,薛龙. 东溪气田深层页岩气探井井身结构设计及优化. 西部探矿工程. 2022(09): 49-52 .
![]() | |
10. |
邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
![]() | |
11. |
贾俊,康海涛,刘洪彬,张涵池. MS1井超深海相地层取心实践与认识. 钻采工艺. 2021(01): 142-146 .
![]() | |
12. |
张新亮,祁正玉,王晓强,侯越全. 川深1井非常规系列尾管悬挂器应用分析. 石油矿场机械. 2021(03): 57-61 .
![]() | |
13. |
伍晓龙,杜垚森,王庆晓. 冀中坳陷区域JZ04井钻井工程设计. 钻探工程. 2021(07): 84-90 .
![]() | |
14. |
赵润琦. 预探井杨柳1井钻井提速关键技术. 石油钻探技术. 2021(05): 26-30 .
![]() | |
15. |
胡大梁,欧彪,张道平,肖国益,严焱诚,易世友. 川深1超深井钻井优化设计. 钻采工艺. 2020(02): 34-37+2-3 .
![]() | |
16. |
李萍,范永涛,刘泳敬,于志强,何谋军,董丙响. 侧钻井钻完井一体化工程可行性探讨. 石油钻采工艺. 2019(01): 8-13 .
![]() | |
17. |
黄志远. 东页深1井钻井设计与施工. 内蒙古石油化工. 2019(05): 45-46 .
![]() | |
18. |
曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术. 石油钻探技术. 2019(03): 25-33 .
![]() | |
19. |
叶金龙,沈建文,吴玉君,杜征鸿,睢圣,李林. 川深1井超深井钻井提速关键技术. 石油钻探技术. 2019(03): 121-126 .
![]() | |
20. |
张伟国,狄明利,卢运虎,张健,杜宣. 南海西江油田古近系泥页岩地层防塌钻井液技术. 石油钻探技术. 2019(06): 40-47 .
![]() | |
21. |
王天宇. 混合钻头技术特点及应用. 西部探矿工程. 2018(06): 73-74+76 .
![]() | |
22. |
徐康,刘光祥,胡文瑄,罗开平,陈迎宾,宫晗凝,张方君. 川西地区须四段砂岩储层特征及主控因素分析. 油气地质与采收率. 2018(02): 42-49 .
![]() | |
23. |
张晓广. 伊拉克米桑油田深井水平井钻井技术. 探矿工程(岩土钻掘工程). 2018(11): 24-28 .
![]() | |
24. |
黄志远. 元坝7井钻井设计与施工. 中国石油大学胜利学院学报. 2018(04): 26-29 .
![]() |