LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094
Citation: LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4): 17-21. DOI: 10.11911/syztjs.2019094

Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1

More Information
  • Received Date: February 19, 2019
  • Revised Date: July 07, 2019
  • Available Online: July 23, 2019
  • The Well Chuanshen-1 encountered an ultra-high temperature and high pressure (ultra-HTHP) formation in the fourth drilling section. In order to ensure the long-term sealing of setting cement in this section, it is preferable to restrain the strength deterioration of setting cement by increasing the silicon powder dosage and by reasonably matching the particle sizes of silicon powder. In addition, the high-temperature styrene-acrylic latex and the nano-liquid silicon have been selected to improve the anti-gas channeling ability, mechanical properties and stability of cement slurry. For this purpose, a high-density anti-gas channeling cement slurry suitable for ultra-HTHP formation was designed, with a density of 2.05 kg/L and an anti-gas channeling coefficient SPN lower than 0.43. In this case, no gas channeling was observed in gas channeling simulation; the compressive strength of set cement reached 41 MPa at 180 °C for 14 d, and no strength deterioration of cement stone was found; the gas measurement permeability of the set cement was 0.008 1 mD, and the uniaxial elastic modulus of set cement was 7.54 GPa. The high-density anti-gas channeling cement slurry was applied in the fourth drilling section of Well Chuanshen-1, and the cementing measures such as "thoroughly displacement", "stable well killing" and "sealing securely" were adopted, which effectively isolated the high-pressure gas layers and provided a good wellbore environment for the successive operations. This process proved that the  ultra-high temperature and high pressure formation could be smoothly cemented by using the suitable cement slurry and taking proper technical measures, and an in following those procedures, it could be possible in the future to assure high cementing quality.

  • [1]
    牛新明,张克坚,丁士东,等. 川东北地区高压防气窜固井技术[J]. 石油钻探技术, 2008, 36(3): 10–15. doi: 10.3969/j.issn.1001-0890.2008.03.003

    NIU Xinming, ZHANG Kejian, DING Shidong, et al. Gas migration prevention cementing technologies in northeast Sichuan Area[J]. Petroleum Drilling Techniques, 2008, 36(3): 10–15. doi: 10.3969/j.issn.1001-0890.2008.03.003
    [2]
    刘威,熊良宵,潘海峰. 高温循环作用下水泥砂浆的力学性能研究[J]. 硅酸盐通报, 2016, 35(7): 2314–2317.

    LIU Wei, XIONG Liangxiao, PAN Haifeng. Mechanical properties of cement mortar under high temperature cycles[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2314–2317.
    [3]
    周仕明,李根生,方春飞. 元坝地区ϕ146.1 mm尾管固井技术难点与对策[J]. 石油钻探技术, 2010, 38(4): 41–44.

    ZHOU Shiming, LI Gensheng, FANG Chunfei. Difficulties and countermeasures for ϕ146.1 mm liner cementing in Yuanba Area[J]. Petroleum Drilling Techniques, 2010, 38(4): 41–44.
    [4]
    路飞飞,李斐,田娜娟,等. 复合加砂抗高温防衰退水泥浆体系[J]. 钻井液与完井液, 2017, 34(4): 85–89. doi: 10.3969/j.issn.1001-5620.2017.04.016

    LU Feifei, LI Fei, TIAN Najuan, et al. High temperature anti strength retrogression cement slurry with compounded silica powder[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 85–89. doi: 10.3969/j.issn.1001-5620.2017.04.016
    [5]
    严思明,严圣东,吴亚楠,等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺, 2018, 40(2): 174–178.

    YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2): 174–178.
    [6]
    高元,桑来玉,杨广国,等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014

    GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex Nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014
    [7]
    程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报, 2016, 37(10): 1287–1292. doi: 10.7623/syxb201610009

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry during liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292. doi: 10.7623/syxb201610009
    [8]
    陆沛青,桑来玉,谢少艾,等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术, 2019, 47(1): 52–58.

    LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52–58.
    [9]
    符军放,张浩,项先忠,等. 硅溶胶在固井水泥浆中的应用性能研究[J]. 西安石油大学学报(自然科学版), 2013, 28(3): 78–82. doi: 10.3969/j.issn.1673-064X.2013.03.017

    FU Junfang, ZHANG Hao, XIANG Xianzhong, et al. Study on the performance of colloidal silica for cementing slurry[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2013, 28(3): 78–82. doi: 10.3969/j.issn.1673-064X.2013.03.017
    [10]
    李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
    [11]
    郭进忠,罗霄,华苏东,等. 抗冲击防窜水泥浆体系性能研究[J]. 钻井液与完井液, 2010, 27(4): 59–61. doi: 10.3969/j.issn.1001-5620.2010.04.020

    GUO Jinzhong, LUO Xiao, HUA Sudong, et al. Study on tough and anti-channeling cement slurry[J]. Drilling Fluid & Completion Fluid, 2010, 27(4): 59–61. doi: 10.3969/j.issn.1001-5620.2010.04.020
  • Cited by

    Periodical cited type(5)

    1. 王中义,孙金声,黄贤斌,吕开河. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展. 精细化工. 2024(10): 2103-2119 .
    2. 李春,颜波,刘洪波,王飞,关庆龄. 极地海洋油气钻井装备发展概述. 船舶与海洋工程. 2024(05): 5-10 .
    3. 马金龙,李继丰,刘惠惠. 俄罗斯北极陆上钻井技术挑战与关键技术. 采油工程. 2023(01): 54-59+85-86 .
    4. 范西哲,李晓,吴永川,张居贵,楼一珊,刘善勇,朱亮. 北极永冻区钻井地层压力预测方法. 天然气工业. 2022(03): 99-105 .
    5. 王磊,胡志强,柯珂,张辉,李莅临,闫莉. 极地冷海浅层天然气水合物地层声学特性模拟实验研究. 中国海上油气. 2022(04): 218-224 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1134) PDF downloads (103) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return