Citation: | ZHANG Jinhong, ZHANG Bo, CAO Ming, et al. key technologies and prospects for oil and gas testing in Sinopec’s “Deep Underground Engineering” [J]. Petroleum Drilling Techniques,2024, 52(2):48-57. DOI: 10.11911/syztjs.2024037 |
In view of complex structures and reservoir media in "Deep Underground Engineering", which includes deep burial, high formation pressure and temperature, and other complicated conditions, Sinopec has carried out key research on technologies such as deep and ultra-deep oil and gas testing, ultra-high temperature and high-pressure bottom hole assembly (BHA), surface testing, oil and gas well testing engineering design of narrow safety window, and well completion testing fluid, etc. Sinopec successfully completed the testing construction of more than 100 oil and gas wells with depth more than 8000 m, and initially formed the initial key technologies and supporting equipment for oil and gas testing in “Deep Underground Engineering”, which strongly supported the exploration and production of deep and ultra-deep oil and gas resources in the Tarim Basin, Sichuan Basin, and Junggar Basin. The key technologies of oil and gas testing in Sinopec’s “Deep Underground Engineering” were summarized, and the challenges in oil and gas testing technologies faced by Sinopec’s “Deep Underground Engineering” during exploration from 9000 m to deeper than 10000 m were analyzed. Technical prospects were put forward for the design of extra-deep high-temperature and high-pressure oil and gas testing engineering, extra-deep high-temperature and high-pressure oil and gas testing completion technology, ground automation testing, and high-performance oil and gas testing tools, etc. The overview and prospect of these technologies are of reference significance for the construction of a more mature, professional, safe, and efficient oil and gas testing technology system, in order to help achieve greater breakthroughs in the exploration and development of deep and ultra-deep oil and gas reservoirs.
[1] |
陆晓如. 破解深地油气关键地质问题:专访中国科学院院士贾承造[J]. 中国石油石化,2023,(17):14–17.
LU Xiaoru. To solve the key geological problems of deep oil and gas:interview with Jia Chengzao, academician of Chinese Academy of Sciences[J]. China Petrochem, 2023, (17): 14–17.
|
[2] |
张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158.
ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158.
|
[3] |
李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57.
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57.
|
[4] |
贾承造. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版),2023,47(5):1–12.
JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 1–12.
|
[5] |
马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.1016/S1876-3804(22)60001-6
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.1016/S1876-3804(22)60001-6
|
[6] |
张煜,李海英,陈修平,等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质–工程一体化实践与成效[J]. 石油与天然气地质,2022,43(6):1466–1480.
ZHANG Yu, LI Haiying, CHENG Xiuping, et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(6): 1466–1480.
|
[7] |
ZHANG Bo, YUAN Fayong, SU Hao, et al. Progress and development direction of “three-high”oil and gas well testing technology[J]. Journal of Power and Energy Engineering, 2022, 10(6): 1–13. doi: 10.4236/jpee.2022.106001
|
[8] |
张科,苏劲,陈永权,等. 塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报,2023,97(6):2026–2041.
ZHANG Ke, SU Jin, CHEN Yongquan, et al. The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(6): 2026–2041.
|
[9] |
陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.
CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
|
[10] |
白彬珍,曾义金,葛洪魁. 顺北56X特深水平井钻井关键技术[J]. 石油钻探技术,2022,50(6):49–55.
BAI Binzhen, ZENG Yijin, GE Hongkui. Key technologies for the drilling of ultra-deep horizontal Well Shunbei 56X[J]. Petroleum Drilling Techniques, 2022, 50(6): 49–55.
|
[11] |
何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控” 高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.
HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.
|
[12] |
耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023,51(2):81–89.
GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81–89.
|
[13] |
刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009
LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009
|
[14] |
王清华,杨海军,汪如军,等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探,2021,26(4):58–71.
WANG Qinghua, YANG Haijun, WANG Rujun, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 58–71.
|
[15] |
邱金平,张明友,才博,等. 超深高温高压含硫化氢气藏高效试油技术新进展[J]. 钻采工艺,2018,41(2):49–50.
QIU Jinping, ZHANG Mingyou, CAI Bo, et al. New advancements in ultradeep HPHT sour gas well testing[J]. Drilling & Production Technology, 2018, 41(2): 49–50.
|
[16] |
戴强,张本健,张晋海. 双鱼石构造超深超高压含硫气井完井管柱完整性设计探讨[J]. 钻采工艺,2019,42(6):44–46.
DAI Qiang, ZHANG Benjian, ZHANG Jinhai. To probe on completion string integrity design for ultradeep ultrahigh-pressure sulfur-contained gas wells at Shuangyushi structure[J]. Drilling & Production Technology, 2019, 42(6): 44–46.
|
[17] |
袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87.
YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87.
|
[18] |
李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.
LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
|
[19] |
刘志英,王芝尧,董拥军,等. 一趟管柱分层射孔试油联作技术[J]. 石油钻探技术,2014,42(2):97–101.
LIU Zhiying, WANG Zhiyao, DONG Yongjun, et al. The technology of integrated layered perforation and formation testing in one trip[J]. Petroleum Drilling Techniques, 2014, 42(2): 97–101.
|
[20] |
赵永强,宋振响,王斌,等. 准噶尔盆地油气资源潜力与中国石化常规–非常规油气一体化勘探策略[J]. 石油实验地质,2023,45(5):872–881.
ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and Sinopec’s integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology and Experiment, 2023, 45(5): 872–881.
|
[21] |
李继,卫然,蒋炎. 勘探试油测试新技术在胜利油田的应用[J]. 石油天然气学报,2008,30(2):502–504.
LI Ji, WEI Ran, JIANG Yan. Application of new exploration and testing technologies in Shengli Oilfield[J]. Journal of Oil and Gas Technology, 2008, 30(2): 502–504.
|
[22] |
阿布力米提·依明. 准噶尔盆地中央坳陷西部深层油气成因与成藏机理[D]. 青岛:中国石油大学(华东),2021.
ABULIMITI Yiming. Generation and accumulation of deep-seated oil and gas in the western central depression of Junggar Basin[D]. Qingdao: China University of Petroleum(East China), 2021.
|
[23] |
孙靖,齐洪岩,薛晶晶,等. 准噶尔盆地深层—超深层致密砾岩储层特征及控制因素[J]. 天然气工业,2023,43(8):26–37.
SUN Jing, QI Hongyan, XUE Jingjing, et al. Characteristics and controlling factors of deep and ultra deep tight conglomerate reservoirs in the Junggar Basin[J]. Natural Gas Industry, 2023, 43(8): 26–37.
|
[24] |
史建南. 准噶尔盆地腹部油气成藏机理研究[D]. 北京:中国石油大学(北京),2007.
SHI Jiannan. Study on hydrocarbon accumulation mechanism in the hinterland of the Junggar Basin[D]. Beijing: China University of Petroleum(Beijing), 2007.
|
[25] |
汪孝敬,白保军,芦慧,等. 深层—超深层高温极强超压砂砾岩储层特征及主控因素:以准噶尔盆地南缘四棵树凹陷高泉地区白垩系清水河组为例[J]. 东北石油大学学报,2022,46(3):54–65.
WANG Xiaojing, BAI Baojun, LU Hui, et al. Characteristics and main controlling factors of deep and ultra-deep glutenite reservoirs with high temperature and very strong overpressure: a case study from the Cretaceous Qingshuihe Formation in Gaoquan Area, Sikeshu Sag, southern margin of Junggar Basin[J]. Journal of Northeast Petroleum University, 2022, 46(3): 54–65.
|
[26] |
吴志均,段德祥,王文广,等. 明格布拉克构造 “五高” 深井试油测试技术[J]. 油气井测试,2020,29(2):13–20.
WU Zhijun, DUAN Dexiang, WANG Wenguang, et al. The oil test technology for “five high” deep well in Mingbulak Structure[J]. Well Testing, 2020, 29(2): 13–20.
|
[27] |
毛军,郭肖,庞伟. 高温高压气密封测试封隔器研发及现场试验[J]. 石油钻探技术,2023,51(6):71–76.
MAO Jun, GUO Xiao, PANG Wei. Development and application of HTHP gas seal test packer[J]. Petroleum Drilling Techniques, 2023, 51(6): 71–76.
|
[28] |
丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023,51(4):104–113.
DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104–113.
|
[29] |
姚展华,王玉忠,左俊香,等. 浅谈试油设计的优化[J]. 油气井测试,2014,23(1):46–48.
YAO Zhanhua, WANG Yuzhong, ZUO Junxiang, et al. Brief discuss on the optimization of oil test design[J]. Well Testing, 2014, 23(1): 46–48.
|
[30] |
何骁,陈更生,吴建发,等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业,2022,42(8):24–34.
HE Xiao, CHEN Gengsheng, WU Jianfa, et al. Deep shale gas exploration and development in the southern Sichuan Basin: new progress and challenges[J]. Natural Gas Industry, 2022, 42(8): 24–34.
|
[31] |
WOOD P, SIMPSON A, HOLLAND B, et al. Monitoring flow and completion integrity of a North Sea subsea HPHT appraisal well during an extended well test using permanently installed fiber-optic temperature sensors[R]. SPE 137120, 2010.
|
[32] |
FUH G F, NOZAKI M. Completion design using sand management approach based on sanding prediction analysis for HPHT gas wells[R]. SPE 170954, 2014.
|
[33] |
OAKES N E. HPHT, development of the subsea option[R]. OTC 8741, 1998.
|
[34] |
BURGER R, GRIGSBY T, ROSS C, et al. Single-trip multiple-zone completion technology has come of age and meets the challenging completion needs of the gulf of Mexico’s deepwater lower tertiary play[R]. SPE 128323, 2010.
|
[1] | WANG Zhizhan. Research Progress and Development Prospect of Intelligent Surface Logging Technology[J]. Petroleum Drilling Techniques, 2024, 52(5): 51-61. DOI: 10.11911/syztjs.2024099 |
[2] | LIU Wei, FU Jiasheng, GUO Qingfeng, ZHAO Qing. Research Progress and Prospects of Key Technologies for Intelligent Managed Pressure Drilling[J]. Petroleum Drilling Techniques, 2024, 52(5): 42-50. DOI: 10.11911/syztjs.2024103 |
[3] | ZENG Yijin, WANG Minsheng, GUANG Xinjun, WANG Guo, ZHANG Hongbao, CHEN Zengwei, DUAN Jinan. Progress and Prospects of Sinopec’s Intelligent Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 1-9. DOI: 10.11911/syztjs.2024081 |
[4] | DING Shidong, LU Peiqing, GUO Yintong, LI Zaoyuan, LU Yunhu, ZHOU Shiming. Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104-113. DOI: 10.11911/syztjs.2023076 |
[5] | LI Tao, SU Qiang, YANG Zhe, XU Weiqiang, HU Xihui. Current Practices and Research Directions for Drilling and Completion Technologies for Ultra-Deep Wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7-15. DOI: 10.11911/syztjs.2022028 |
[6] | ZHANG Shikun, CHEN Zuo. Status and Prospect of Artificial Intelligence Application in Fracturing Technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69-77. DOI: 10.11911/syztjs.2022115 |
[7] | ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072 |
[8] | YANG Mingqing. Current Status and Application Prospects of Mud Logging in Russia[J]. Petroleum Drilling Techniques, 2018, 46(4): 115-120. DOI: 10.11911/syztjs.2018065 |
[9] | Ming Ruiqing, Zhang Shizhong, Wang Haitao, Hong Yi, Jiang Shulong. Research Status and Prospect of Hydraulic Oscillator Worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116-122. DOI: 10.11911/syztjs.201505020 |
[10] | Sun Xu, Zhao Jinhai, Teng Chunming, Yang Chuanshu, Wang Mingfang. Status and Prospect of Drilling Simulation Technique at Home and Abroad[J]. Petroleum Drilling Techniques, 2012, 40(5): 54-58. DOI: 10.3969/j.issn.1001-0890.2012.05.012 |