CHEN Zongqi, LIU Jingtao, CHEN Xiuping. Up-to-Date ROP improvement technologies for drilling in the Paleozoic of Shunbei Oil & Gas Field and suggestions for further improvements [J]. Petroleum Drilling Techniques,2023, 51(2):1-6. DOI: 10.11911/syztjs.2023033
Citation: CHEN Zongqi, LIU Jingtao, CHEN Xiuping. Up-to-Date ROP improvement technologies for drilling in the Paleozoic of Shunbei Oil & Gas Field and suggestions for further improvements [J]. Petroleum Drilling Techniques,2023, 51(2):1-6. DOI: 10.11911/syztjs.2023033

Up-to-Date ROP Improvement Technologies for Drilling in the Paleozoic of Shunbei Oil & Gas Field and Suggestions for Further Improvements

More Information
  • Received Date: January 09, 2022
  • Revised Date: January 29, 2023
  • Available Online: February 01, 2023
  • The reservoirs in Shunbei Oil & Gas Field are characterized by a deep burial depth of 8000−8800 m. There are many strata to cross in the drilling process, and the lithology is very complex. A persistent issue, the slow drilling speed and short bit life of Paleozoic lead to the problems of long drilling cycle and high cost, which restrict its efficient and economic development. Therefore, the characteristics of the hard-to-drill formations that influence the rock-breaking efficiency in the Paleozoic and also the difficult parts of rate of penetration(ROP) improvement were analyzed. Subsequently, ROP improvement technologies designed for drilling in the Permian, Carboniferous-Silurian, and Sangtamu Formation were summarized. Meanwhile, the ROP improvement principles and characteristics of these technologies were clarified, and the performance of the technologies in improving the ROP in the Paleozoic of Shunbei Oil & Gas Field was analyzed. On this basis, the problems with currently available ROP improvement technologies were further investigated. This work points out that the technical bottleneck restricting the development of drilling acceleration technology in Shunbei Oil & Gas Field was due to a great difference in the effect of various ROP improvement technologies, the lack of theoretical basis and an unclear drilling acceleration potential. Finally, the suggestions for further improvements of ROP improvement technologies for the Paleozoic were proposed to provide a new approach to further enhancing the rock-breaking efficiency in the Paleozoic of Shunbei Oil & Gas Field.

  • [1]
    陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10.
    [2]
    李文霞,王居贺,王治国,等. 顺北油气田超深高温水平井井眼轨迹控制技术[J]. 石油钻探技术,2022,50(4):18–24.

    LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 18–24.
    [3]
    于海叶,王树江,葛磊,等. 新疆火成岩地层气体钻井实践[J]. 钻采工艺,2014,37(2):19–22.

    YU Haiye, WANG Shujiang, GE Lei, et al. Application of gas drilling in Xinjiang igneous rock layer[J]. Drilling & Production Technology, 2014, 37(2): 19–22.
    [4]
    陶兴华. 提高深井钻井速度的有效技术方法[J]. 石油钻采工艺,2001,23(5):4–8.

    TAO Xinghua. Effective measures for improving the penetration rate of deep well[J]. Oil Drilling & Production Technology, 2001, 23(5): 4–8.
    [5]
    左汝强. 国际油气井钻头进展概述(一):Kymera组合式 (Hybrid) 钻头系列[J]. 探矿工(岩土钻掘工程),2016,43(1):4–6.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (1): Kymera hybrid bit[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(1): 4–6.
    [6]
    左汝强. 国际油气井钻头进展概述 (四): PDC钻头发展进程及当今态势 (下)[J]. 探矿工程(岩土钻掘工程),2016,43(4):40–48.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (4): PDC bits progress and present trend (Ⅱ)[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(4): 40–48.
    [7]
    左汝强. 国际油气井钻头进展概述 (三):PDC钻头发展进程及当今态势 (上)[J]. 探矿工程(岩土钻掘工程),2016,43(3):1–8.

    ZUO Ruqiang. International advancement of drilling bits for oil and gas well (3): PDC bits progress and present trend (Ⅰ)[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(3): 1–8.
    [8]
    袁媛. 添加纳米Co的新型PDC复合片材料试验研究[D]. 成都: 西南石油大学, 2016.

    YUAN Yuan. Experimental study on new PDC composite sheet material with nano Co[D]. Chengdu: Southwest Petroleum University, 2016.
    [9]
    刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17.

    LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17.
    [10]
    仝斐斐,王海阔,刘俊龙,等. 金刚石复合片脱钴技术研究[J]. 超硬材料工程,2017,29(4):1–7.

    TONG Feifei, WANG Haikuo, LIU Junlong, et al. Research on the method of Cobalt removal of polycrystalline diamond compact[J]. Superhard Material Engineering, 2017, 29(4): 1–7.
    [11]
    唐虎,王明智,康宁,等. 纳米金刚石聚晶的合成与性能综述[J]. 金刚石与磨料磨具工程,2018,38(1):7–15.

    TANG Hu, WANG Mingzhi, KANG Ning, et al. Synthesis and performance of nano-polycrystalline diamond[J]. Diamond & Abrasives Engineering, 2018, 38(1): 7–15.
    [12]
    李明谦,黄继庆. 螺杆钻具的应用现状及未来发展建议[J]. 石油机械,2006,34(5):73–76.

    LI Mingqian, HUANG Jiqing. Application status and future development suggestions of screw drill[J]. China Petroleum Machinery, 2006, 34(5): 73–76.
    [13]
    杨顺辉. 液动射流式冲击器的研究现状与发展方向[J]. 石油机械,2009,37(2):73–76.

    YANG Shunhui. Research status and development direction of hydraulic jet impactor[J]. China Petroleum Machinery, 2009, 37(2): 73–76.
    [14]
    李国华,鲍洪志,陶兴华. 旋冲钻井参数对破岩效率的影响研究[J]. 石油钻探技术,2004,32(2):4–7. doi: 10.3969/j.issn.1001-0890.2004.02.002

    LI Guohua, BAO Hongzhi, TAO Xinghua. Effects of drilling conditions on crushing rocks while rotary percussion drilling[J]. Petroleum Drilling Techniques, 2004, 32(2): 4–7. doi: 10.3969/j.issn.1001-0890.2004.02.002
    [15]
    王克雄. 冲击旋转钻井技术在石油钻井中的应用研究[J]. 石油钻采工艺,1999,21(5):5–9.

    WANG Kexiong. Research and application of percussion rotary drilling technology in petroleum drilling[J]. Oil Drilling & Production Technology, 1999, 21(5): 5–9.
    [16]
    ZHANG Hongning, GUANG Zhichuan, WANG Heng, et al. Experimental study of downhole shock absorber based on the similarity theory[J]. Advances in Petroleum Exploration and Development, 2015, 9(1): 98–102.
    [17]
    管志川,张洪宁,张伟,等. 吸振式井下液压脉冲发生装置[J]. 石油勘探与开发,2014,41(5):618–622.

    GUAN Zhichuan, ZHANG Hongning, ZHANG Wei, et al. Equipment and technique for improving penetration rate by the transformation of drill string vibration to hydraulic pulsating jet[J]. Petroleum Exploration and Development, 2014, 41(5): 618–622.
    [18]
    管志川,张洪宁,刘永旺,等. 井下液压脉冲发生器工作特性仿真[J]. 中国石油大学学报(自然科学版),2015,39(3):84–88.

    GUAN Zhichuan, ZHANG Hongning, LIU Yongwang, et al. Simulation of working characteristic of downhole hydraulically pulsed jet generator[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(3): 84–88.
    [19]
    张洪宁,管志川,王恒,等. 钻柱振动能量转化效率评价试验方法研究[J]. 石油机械,2015,43(8):21–25.

    ZHANG Hongning, GUAN Zhichuan, WANG Heng, et al. Evaluation test for drill string vibration energy conversion efficiency[J]. China Petroleum Machinery, 2015, 43(8): 21–25.
    [20]
    刘永旺,管志川,张洪宁,等. 一种转化钻柱振动能量的井底高压喷射钻井装置[J]. 天然气工业,2017,37(9):91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012

    LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. A downhole high-pressure jet drilling device transforming drilling string vibration energy[J]. Natural Gas Industry, 2017, 37(9): 91–96. doi: 10.3787/j.issn.1000-0976.2017.09.012
    [21]
    刘永旺,管志川,张洪宁,等. 基于钻柱振动的井下提速技术研究现状及展望[J]. 中国海上油气,2017,29(4):131–137.

    LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. Research status and prospect of ROP-enhancing technology based on drill string vibration[J]. China Offshore Oil and Gas, 2017, 29(4): 131–137.
    [22]
    张洪宁,管志川,刘永旺,等. 井下钻柱减振增压装置工作特性的仿真研究[J]. 机床与液压,2016,44(5):162–165.

    ZHANG Hongning, GUAN Zhichuan, LIU Yongwang, et al. Simulation research of working characteristics of downhole drill string absorption & hydraulic supercharging device[J]. Machine Tool & Hydraulics, 2016, 44(5): 162–165.
    [23]
    ZHANG Hongning, GUAN Zhichuan, LIU Yongwang, et al. A novel tool to improve the rate of penetration by transferring drilling string vibration energy to hydraulic energy[J]. Journal of Petroleum Science and Engineering, 2016, 146: 318–325. doi: 10.1016/j.petrol.2016.04.025
    [24]
    管志川,刘永旺,魏文忠,等. 井下钻柱减振增压装置工作原理及提速效果分析[J]. 石油钻探技术,2012,40(2):8–13.

    GUAN Zhichuan, LIU Yongwang, WEI Wenzhong, et al. Downhole drill string absorption & hydraulic supercharging device’ working principle and analysis of speed-increasing effect[J]. Petroleum Drilling Techniques, 2012, 40(2): 8–13.
    [25]
    张玉英,刘永旺,巴鲁军,等. 新型井下增压装置研制及现场试验研究[J]. 石油矿场机械,2012,41(3):58–62.

    ZHANG Yuying, LIU Yongwang, BA Lujun, et al. Study on a new type of down-hole supercharger and field experimental[J]. Oil Field Equipment, 2012, 41(3): 58–62.
    [26]
    于洋,南玉民,李双贵,等. 顺北油田古生界钻井提速技术[J]. 断块油气田,2019,26(6):780–783.

    YU Yang, NAN Yumin, LI Shuanggui, et al. Technology for increasing drilling speed of Paleozoic stratum in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 780–783.
    [27]
    刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142.

    LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142.
    [28]
    于洋,刘士银. 高速旋冲钻井技术优化及在顺北区块的试验[J]. 石油机械,2020,48(10):24–29. doi: 10.16082/j.cnki.issn.1001-4578.2020.10.004

    YU Yang, LIU Shiyin. High-speed rotary percussion drilling technology optimization and its field test in the Shunbei Block[J]. China Petroleum Machinery, 2020, 48(10): 24–29. doi: 10.16082/j.cnki.issn.1001-4578.2020.10.004
    [29]
    王延文,高凯,李光泉. 顺北某井优快钻井技术实践浅析[J]. 石化技术,2022,29(4):53–55.

    WANG Yanwen, GAO Kai, LI Guangquan. Optimal and fast drilling practice in SHB-XX[J]. Petrochemical Industry Technology, 2022, 29(4): 53–55.
    [30]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
  • Related Articles

    [1]GUO Xiao, PANG Wei, ZHANG Xudong, WANG Haodong. Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging[J]. Petroleum Drilling Techniques, 2025, 53(1): 130-135. DOI: 10.11911/syztjs.2024123
    [2]WANG Wanjiang, LI Weiqin, LIU Changmin, WU Yuhan. Collaborative Relay Transmission Method for Downhole Surface Electromagnetic Waves[J]. Petroleum Drilling Techniques, 2024, 52(4): 143-150. DOI: 10.11911/syztjs.2024076
    [3]SUN Lin, ZHANG Lei, LI Xuguang, YANG Junwei, XIONG Peiqi. Optimization and Downhole Testing of Hydraulic Impact Tools[J]. Petroleum Drilling Techniques, 2022, 50(5): 108-111. DOI: 10.11911/syztjs.2022052
    [4]YANG Lingzhi, ZHOU Zhiping, YANG Haien, JI Zhenning. Downhole Constant-Flow Stratified Water Injection Technology with Concentric Bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104-108. DOI: 10.11911/syztjs.2022051
    [5]YANG Chuanshu, LI Changsheng, SUN Xudong, HUANG Liming, ZHANG Haolin. Research Method and Practice of Artificial Intelligence Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7-13. DOI: 10.11911/syztjs.2020136
    [6]ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
    [7]FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117
    [8]HU Liang, XIAO Li, ZHAO Jianjun, YIN Huibo. Study on the Downhole Influence Factors of Radio Frequency Identification Technology[J]. Petroleum Drilling Techniques, 2018, 46(2): 63-68. DOI: 10.11911/syztjs.2018015
    [9]Wu Xudong, Liu Hexing, Fang Manzong, Ma Chuanhua, Zheng Jinlong, Niu Xue. Directional Drilling Reaming Technology in the Shallow Formation of Well A14H in the LD22-1 Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(6): 115-119. DOI: 10.11911/syztjs.201406023
    [10]Zhu Yu, Gao Deli. Design Optimization of Downhole Magnetic Source for Rotary Magnetic Ranging System[J]. Petroleum Drilling Techniques, 2014, 42(3): 102-107. DOI: 10.3969/j.issn.1001-0890.2014.03.019
  • Cited by

    Periodical cited type(5)

    1. 王中义,孙金声,黄贤斌,吕开河. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展. 精细化工. 2024(10): 2103-2119 .
    2. 李春,颜波,刘洪波,王飞,关庆龄. 极地海洋油气钻井装备发展概述. 船舶与海洋工程. 2024(05): 5-10 .
    3. 马金龙,李继丰,刘惠惠. 俄罗斯北极陆上钻井技术挑战与关键技术. 采油工程. 2023(01): 54-59+85-86 .
    4. 范西哲,李晓,吴永川,张居贵,楼一珊,刘善勇,朱亮. 北极永冻区钻井地层压力预测方法. 天然气工业. 2022(03): 99-105 .
    5. 王磊,胡志强,柯珂,张辉,李莅临,闫莉. 极地冷海浅层天然气水合物地层声学特性模拟实验研究. 中国海上油气. 2022(04): 218-224 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (566) PDF downloads (225) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return