YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge [J]. Petroleum Drilling Techniques,2022, 50(4):104-108. DOI: 10.11911/syztjs.2022051
Citation: YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge [J]. Petroleum Drilling Techniques,2022, 50(4):104-108. DOI: 10.11911/syztjs.2022051

Downhole Constant-Flow Stratified Water Injection Technology with Concentric Bridge

More Information
  • Received Date: May 25, 2021
  • Revised Date: April 23, 2022
  • Available Online: April 17, 2022
  • In view of the problem that downhole pressure fluctuations cause the qualified rate of stratified water injection to drop rapidly in low permeability reservoirs, a downhole small-volume water nozzle was designed with a self-adjusting mechanism. It was then integrated into the downhole constant-flow stratified water distributor using a concentric bridge, which would minimize pressure fluctuation-triggered stratified flow variations. On the basis of the Bernoulli principle, with theoretical analysis and laboratory experiment, a self-adjusting mechanism was designed to achieve the stratified and constant flow water injection with small flow rate. According to laboratory experiments, the self-adjusting mechanism can be adjusted within an injection pressure range of 0.2−1.5 MPa. Adopting the water nozzle mechanism, the downhole constant-flow stratified water injection technology with concentric bridge has been applied in more than 40 wells in the low permeability reservoirs of Changqing Oilfield. It is possible to achieve an increase of injection pressure rise by 1.5 MPa without manual intervention, and the stratified flow adjusted automatically until the injection is qualified. The field application in Changqing Oilfield showed that the technology could increase the qualified rate of stratified water injection from 43.4% to 75.0% within 6 months and reduce the testing and adjusting frequency from 4 times to 2 times per year. It can also prolong the testing and adjusting period of the involved wells so that the annual operation expenses for a single well can be reduced by 26 000 yuan.The stratified water injection technology proposed has provided an efficient stratified water injection method for fine water injection development in low permeability reservoirs.

  • [1]
    刘合,裴晓含,罗凯,等. 中国油气田开发分层注水工艺技术现状与发展趋势[J]. 石油勘探与开发,2013,40(6):733–737. doi: 10.11698/PED.2013.06.13

    LIU He, PEI Xiaohan, LUO Kai, et al. Current status and trend of separated layer water flooding in China[J]. Petroleum Exploration and Development, 2013, 40(6): 733–737. doi: 10.11698/PED.2013.06.13
    [2]
    于九政,巨亚锋,郭方元. 桥式同心分层注水工艺的研究与试验[J]. 石油钻采工艺,2015,37(5):92–94.

    YU Jiuzheng, JU Yafeng, GUO Fangyuan. Research and experiment on bridge concentric separated layer water injection technology[J]. Oil Drilling & Production Technology, 2015, 37(5): 92–94.
    [3]
    杨玲智,刘延青,胡改星,等. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术,2020,48(2):113–117. doi: 10.11911/syztjs.2020023

    YANG Lingzhi, LIU Yanqing, HU Gaixing, et al. Stratified water injection technology of concentric seal-check, logging and adjustment integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113–117. doi: 10.11911/syztjs.2020023
    [4]
    叶勤友,刘亚珍,孙伟,等. 智能化多管分层注水技术研究与应用[J]. 石油机械,2021,49(6):82–87.

    YE Qinyou, LIU Yazhen, SUN Wei, et al. Research of intelligent multi-pipe separate zone injection technology[J]. China Petroleum Machinery, 2021, 49(6): 82–87.
    [5]
    刘红兰. 胜利海上油田安全可控长效分层注水技术[J]. 石油钻探技术,2019,47(1):83–89. doi: 10.11911/syztjs.2018149

    LIU Honglan. Safe and controllable long-term layered water injection technology for the Shengli offshore oilfield[J]. Petroleum Drilling Techniques, 2019, 47(1): 83–89. doi: 10.11911/syztjs.2018149
    [6]
    贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112. doi: 10.11911/syztjs.2020137

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112. doi: 10.11911/syztjs.2020137
    [7]
    徐兴安,张凤辉,杨万有,等. 注水井高效测调一体化技术研究与应用[J]. 石油机械,2020,48(8):43–49.

    XU Xing’an, ZHANG Fenghui, YANG Wanyou, et al. Integrated high efficient testing and adjustment technology for water injection wells[J]. China Petroleum Machinery, 2020, 48(8): 43–49.
    [8]
    刘红兰. 分层注水井测调一体化新技术[J]. 石油钻探技术,2018,46(1):83–89.

    LIU Honglan. A new integrated measuring and adjusting technology of separate layer water injection well[J]. Petroleum Drilling Techniques, 2018, 46(1): 83–89.
    [9]
    刘义刚,孟祥海,张志熊,等. 海上油田小井眼分注井测调一体化工艺研究[J]. 石油机械,2021,49(3):90–94.

    LIU Yigang, MENG Xianghai, ZHANG Zhixiong, et al. Study on the integrated measurement and adjustment technology for slim hole separate injection wells in offshore oilfield[J]. China Petroleum Machinery, 2021, 49(3): 90–94.
    [10]
    杨玲智,于九政,王子建,等. 桥式同心分层压降测试仪器研制与试验[J]. 石油机械,2017,45(6):96–98.

    YANG Lingzhi, YU Jiuzheng, WANG Zijian, et al. Development and test of bridge concentric separate layer pressure testing device[J]. China Petroleum Machinery, 2017, 45(6): 96–98.
    [11]
    丁晓芳. 井下空心恒流量配水技术研究[J]. 石油机械,2009,37(11):68–71.

    DING Xiaofang. Research on the borehole hollow constant flow water distribution technology[J]. China Petroleum Machinery, 2009, 37(11): 68–71.
  • Related Articles

    [1]LI Jianhui, LI Xiang, YUE Ming, DA Yinpeng, DONG Qi, CHANG Du. Productivity Model and Seepage Rules for the Broadband Fracturing of Ultra-Low Permeability Reservoirs in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 112-119. DOI: 10.11911/syztjs.2022085
    [2]SUN Huan, ZHU Mingming, ZHANG Qin, SHI Chongdong, WANG Qingchen, QU Yanping. Safe Drilling and Completion Technologies for Ultra-Long Horizontal Section of Tight Gas Horizontal Wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 14-19. DOI: 10.11911/syztjs.2022095
    [3]WANG Zhongliang, ZHOU Yang, WEN Xiaofeng, LONG Bin, DING Fan, CHEN Shaowei. Drilling Technologies for Horizontal Wells with Ultra-Long Horizontal Section and Slim Hole in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 14-18. DOI: 10.11911/syztjs.2021060
    [4]LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
    [5]TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
    [6]NI Huafeng, YANG Guang, ZHANG Yanbing. ROP Improvement Technologies for Large-Cluster Horizontal Shale Oil Wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29-33. DOI: 10.11911/syztjs.2021076
    [7]YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
    [8]JIA Yuqin, ZHENG Mingke, YANG Haien, ZHOU Guangqing. Optimization of Operational Parameters for Deep Displacement Involving Polymer Microspheres in Low Permeability Reservoirs of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(1): 75-82. DOI: 10.11911/syztjs.2018030
    [9]JIA Jun, ZHAO Xiangyang, LIU Wei. Research and Field Test of Water-Based Environmental-Friendly Membrane Forming Drilling Fluid Technology in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(5): 36-42. DOI: 10.11911/syztjs.201705007
    [10]Wang Wenhuan, Peng Huanhuan, Li Guangquan, Lei Zhengdong, Lü Wenfeng. Research on Water Flooding Dynamic Fractures to Optimize Infill Drilling Spacing in Ultra-Low Permeability Reservoirs,Changqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 106-110. DOI: 10.11911/syztjs.201501018
  • Cited by

    Periodical cited type(11)

    1. 刘刚,李海峰,阿守燕,赵艳,高腾飞. 延长油田井下分层注水管柱双通道流量智能调节方法. 自动化与仪器仪表. 2025(02): 121-125 .
    2. 李喆玮. 恒流量自动配水器在某油田注水系统中的应用研究. 电脑知识与技术. 2025(14): 80-82 .
    3. 刘国振,崔宇,丁鹏飞,张智,杨昆. 稠油水驱注采管柱极限寿命预测与安全管控. 石油机械. 2024(02): 130-140 .
    4. 周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 . 本站查看
    5. 范春高,刘汉东. 基于桥式同心分层注水技术在油田采油应用研究. 石化技术. 2024(06): 214-216+294 .
    6. 周鹏,董越,刘冠华,郭卫民. 桥式同心分层注水技术对提高采收率的影响分析. 当代化工. 2024(12): 2893-2897 .
    7. 周鹏,董越,刘冠华,郭卫民. 桥式同心分层注水技术对提高采收率的影响分析. 当代化工. 2024(12): 2893-2897 .
    8. 鲁义攀,魏勇,陈强,刘国权,刘杰. 基于热传导时域积分的井下流量测量方法. 石油钻探技术. 2023(01): 106-114 . 本站查看
    9. 王涛,李尧,何辉. 考虑压力约束的精细分层注水耦合调配模型. 石油钻探技术. 2023(02): 95-101 . 本站查看
    10. 杜康,刘永国,郭萍,陈志刚,慕进升,黄凯,王琛. 基于核磁共振技术评价气田采出水对地层的伤害机理. 工业水处理. 2023(05): 149-157 .
    11. 赵洪绪,柴世超,毛敏,于伟强,李金泽,李庆庆,刘均荣. 基于长短期记忆神经网络模型的分层注水优化方法. 中国海上油气. 2023(04): 127-137 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (323) PDF downloads (48) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return