Citation: | GUO Xiao, PANG Wei, ZHANG Xudong, et al. Design and performance simulation of acoustic metamaterial particle for downhole imaging [J]. Petroleum Drilling Techniques, 2025, 53(1):130−135. DOI: 10.11911/syztjs.2024123 |
The traditional acoustic detection technology depends on the difference in physical properties of formation, and the range and accuracy of information identification are limited. Therefore, acoustic metamaterial particles with a three-layer structure were designed by using the unique microstructure principle of acoustic metamaterials based on the mass-spring structure model. The material structure size was optimized, and the optimal material composition was selected. As a result, the acoustic characteristic model of metamaterial particles was established to characterize the special acoustic frequency and acoustic strength characteristics of passive acoustic metamaterial particles. The particle properties of acoustic metamaterials were simulated by finite element numerical simulation software. The results show that the acoustic metamaterial particles have special acoustic frequency bands, and the characteristic frequency gradually increases as the particle size decreases. Within the frequency range of the acoustic band gap, the acoustic wave cannot penetrate the metamaterial particle cluster, and most of them are reflected. Outside the acoustic band gap, the acoustic wave can penetrate the metamaterial particle cluster. The acoustic metamaterial particles can strengthen the downhole imaging and show potential for evaluating wellbore integrity and monitoring fractures.
[1] |
张波,罗方伟,孙秉才,等. 深层油气井井筒完整性检测方法[J]. 石油钻探技术,2021,49(5):114–120. doi: 10.11911/syztjs.2021127
ZHANG Bo, LUO Fangwei, SUN Bingcai, et al. A method for wellbore integrity detection in deep oil and gas wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114–120. doi: 10.11911/syztjs.2021127
|
[2] |
牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111
NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111
|
[3] |
李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024,52(1):1–7. doi: 10.11911/syztjs.2024001
LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1–7. doi: 10.11911/syztjs.2024001
|
[4] |
陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554.
CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 550–554.
|
[5] |
祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134.
QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.
|
[6] |
孙小芳,刘峰,张聪慧,等. 慢速地层偶极声波远探测井眼成像发射频率优选[J]. 石油钻探技术,2023,51(1):98–105. doi: 10.11911/syztjs.2023017
SUN Xiaofang, LIU Feng, ZHANG Conghui, et al. Emission frequency optimization of borehole imaging for dipole acoustic remote detection of slow formations[J]. Petroleum Drilling Techniques, 2023, 51(1): 98–105. doi: 10.11911/syztjs.2023017
|
[7] |
赵辉,齐怀彦,王凯,等. 致密砂岩油藏测井响应特征及有利区评价[J]. 特种油气藏,2023,30(5):35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
ZHAO Hui, QI Huaiyan, WANG Kai, et al. Characteristics of well logging response and evaluation of favorable zones in tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
|
[8] |
刘美成. 致密储层测井评价技术及发展方向[J]. 特种油气藏,2022,29(4):12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002
LIU Meicheng. Logging evaluation technology and further development of tight reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002
|
[9] |
夏百战,杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报,2023,21(7):1–4 .
XIA Baizhan, YANG Tianzhi. Progress in acoustic metamaterials and phononic crystals[J]. Journal of Dynamics and Control, 2023, 21(7): 1–4.
|
[10] |
PALISCH T, AL-TAILJI W, BARTEL L, et al. Far-field proppant detection using electromagnetic methods-Latest field results[R]. SPE 184880, 2017.
|
[11] |
RAMM A G. A recipe for making materials with negative refraction in acoustics[J]. Physics Letters A, 2008, 372(13): 2319–2321. doi: 10.1016/j.physleta.2007.11.037
|
[12] |
ZHAO Honggang, WEN Jihong, YU Dianlong, et al. Low-frequency acoustic absorption of localized resonances: experiment and theory[J]. Journal of Applied Physics, 2010, 107(2): 023519. doi: 10.1063/1.3284943
|
[13] |
LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734–1736.
|
[14] |
MILLER Q R S, NUNE S K, SCHAEF H T, et al. Microporous and flexible framework acoustic metamaterials for sound attenuation and contrast agent applications[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44226–44230.
|
[15] |
MILLER Q R S, SCHAEF H T, NUNE S K, et al. Geophysical monitoring with seismic metamaterial contrast agents[R]. URTEC 2019-1123, 2019.
|
[16] |
NUNE S K, MILLER Q R S, SCHAEF H T, et al. Transport of polymer-coated metal-organic framework nanoparticles in porous media[J]. Scientific Reports, 2022, 12(1): 13962. doi: 10.1038/s41598-022-18264-y
|
[17] |
POLLOCK J, VEEDU V, ELSHAHAWI H. Acoustically responsive cement for enhanced well integrity[R]. OTC 29021, 2018.
|
[18] |
张宏宽,周萧明. 声波超材料设计的力学原理与进展[J]. 固体力学学报,2016,37(5):387–397.
ZHANG Hongkuan, ZHOU Xiaoming. Mechanics concepts and advances of acoustic metamaterials design[J]. Chinese Journal of Solid Mechanics, 2016, 37(5): 387–397.
|