GENG Xueli, ZHENG Xiaobin, SU Yanhui, et al. Guar gum drilling fluid technology for coalbed methane horizontal wells in Qinnan Area [J]. Petroleum Drilling Techniques,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038
Citation: GENG Xueli, ZHENG Xiaobin, SU Yanhui, et al. Guar gum drilling fluid technology for coalbed methane horizontal wells in Qinnan Area [J]. Petroleum Drilling Techniques,2023, 51(1):34-39. DOI: 10.11911/syztjs.2022038

Guar Gum Drilling Fluid Technology for Coalbed Methane Horizontal Wells in Qinnan Area

More Information
  • Received Date: July 16, 2022
  • Revised Date: December 27, 2022
  • Available Online: November 07, 2022
  • Wellbore collapse and reservoir damage occurred when clean brine and conventional polymer drilling fluids were used in drilling horizontal wells of No. 15 coal seam in Qinnan Area. In view of this, according to reservoir characteristics and challenges encountered during drilling, a guar gum drilling fluid and a bio-enzyme gel breaking fluid were developed. Specifically, the guar gum drilling fluid was formed by optimizing the dosage of guar gum, evaluating the salt tolerance, and integrating with other treatment agents. And the bio-enzyme gel breaking fluid was produced by optimizing types and dosage of bio-enzyme and cleanup additive. The laboratory test showed that the guar gum drilling fluid had good rheological and salt tolerance properties. It could greatly improve the compressive strength of coal and rock, and easily achieve gel breaking at low temperatures, with residues after breaking less than 300 mg/L.The permeability recovery rate of coal rock was more than 85%. In terms of the application of the guar gum drilling fluid in coalbed methane (CBM) horizontal wells in Qinnan Area, the fluid showed positive wellbore stability. In addition, it not only achieved gel breaking at low temperatures but also improved the daily productivity of a single well by more than 15% after integrating with the bio-enzyme gel breaking fluid, which indicated a favorable reservoir protection effect. The research shows that the guar gum drilling fluid can ensure smooth drilling of long horizontal sections in coal seams and achieve gel breaking at low temperatures after drilling, which provides a new reservoir protection method for drilling horizontal wells in fragile coal seams.

  • [1]
    包敏新,殷玉平,张裕. 低温储层生物酶破胶工艺研究与应用[J]. 石油化工应用,2019,38(6):49–51. doi: 10.3969/j.issn.1673-5285.2019.06.011

    BAO Minxin, YIN Yuping, ZHANG Yu. Study and application of biological enzyme gel breaking technology in low temperature reservoir[J]. Petrochemical Industry Application, 2019, 38(6): 49–51. doi: 10.3969/j.issn.1673-5285.2019.06.011
    [2]
    周建平,杨战伟,徐敏杰,等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术,2021,49(2):96–101. doi: 10.11911/syztjs.2021014

    ZHOU Jianping, YANG Zhanwei, XU Minjie, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96–101. doi: 10.11911/syztjs.2021014
    [3]
    徐涛,倪小明. 潘庄区块煤层气井井径扩大主控因素研究[J]. 重庆科技学院学报(自然科学版),2014,16(1):92–95. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.01.023

    XU Tao, NI Xiaoming. Study on the main controlling factor of CBM borehole diameter expansion in Panzhuang Block[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2014, 16(1): 92–95. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.01.023
    [4]
    宋瑞,宋峙潮,李小刚,等. 煤储层低伤害CO2泡沫压裂液[J]. 钻井液与完井液,2021,38(5):641–647.

    SONG Rui, SONG Zhichao, LI Xiaogang, et al. Low damage CO2 foam fracturing fluid for coal bed fracturing[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 641–647.
    [5]
    孙建平,张健,王建中. 沁南潘河煤层气田空气钻井和固井技术[J]. 天然气工业,2011,31(5):24–27. doi: 10.3787/j.issn.1000-0976.2011.05.006

    SUN Jianping, ZHANG Jian, WANG Jianzhong. Air drilling and cementing in the Panhe CBM Gas Field, southern Qinshui Basin[J]. Natural Gas Industry, 2011, 31(5): 24–27. doi: 10.3787/j.issn.1000-0976.2011.05.006
    [6]
    宫大军. 海水基速溶低摩阻胍胶压裂液的研究[J]. 钻井液与完井液,2021,38(3):371–374.

    GONG Dajun. Study on instant low friction seawater based guar gum fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 371–374.
    [7]
    叶建平,吴建光,房超,等. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业,2011,31(5):16–20. doi: 10.3787/j.issn.1000-0976.2011.05.004

    YE Jianping, WU Jianguang, FANG Chao, et al. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry, 2011, 31(5): 16–20. doi: 10.3787/j.issn.1000-0976.2011.05.004
    [8]
    许启鲁,黄文辉,刘贝,等. 沁水盆地南部15号煤储层物性特征分析[J]. 煤矿安全,2015,46(3):160–163. doi: 10.13347/j.cnki.mkaq.2015.03.047

    XU Qilu, HUANG Wenhui, LIU Bei, et al. Physical characteristics analysis of No. 15 coal reservoir in southern Qinshui Basin[J]. Safety in Coal Mines, 2015, 46(3): 160–163. doi: 10.13347/j.cnki.mkaq.2015.03.047
    [9]
    毛金成,杨小江,宋志峰,等. 耐高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术,2017,45(6):105–109. doi: 10.11911/syztjs.201706019

    MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105–109. doi: 10.11911/syztjs.201706019
    [10]
    陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184–188. doi: 10.13639/j.odpt.2021.02.008

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Oil Drilling & Production Technology, 2021, 43(2): 184–188. doi: 10.13639/j.odpt.2021.02.008
    [11]
    许朋琛,陈宁,胡景东,等. 可降解清洁钻井液的研究及现场应用[J]. 钻井液与完井液,2017,34(3):27–32. doi: 10.3969/j.issn.1001-5620.2017.03.005

    XU Pengchen, CHEN Ning, HU Jingdong, et al. Study and field application of degradable clear drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 27–32. doi: 10.3969/j.issn.1001-5620.2017.03.005
    [12]
    张政,秦勇,傅雪海,等. 潘庄区块煤层含气性分布规律及地质控制因素分析[J]. 煤炭科学技术,2014,42(5):98–102. doi: 10.13199/j.cnki.cst.2014.05.027

    ZHANG Zheng, QIN Yong, FU Xuehai, et al. Distribution law of gas-bearing property of coal seams and analysis on geological control factors in Panzhuang Block[J]. Coal Science and Technology, 2014, 42(5): 98–102. doi: 10.13199/j.cnki.cst.2014.05.027
    [13]
    邓钧耀,刘奕杉,乔磊,等. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术[J]. 石油钻探技术,2021,49(2):37–41. doi: 10.11911/syztjs.2020124

    DENG Junyao, LIU Yishan, QIAO Lei, et al. Drilling and completion technology of horizontal wells with long horizontal section in the Yellow River overlay area of the Baode coalbed methane field[J]. Petroleum Drilling Techniques, 2021, 49(2): 37–41. doi: 10.11911/syztjs.2020124
    [14]
    闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375–380.

    YAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375–380.
    [15]
    乔磊,申瑞臣,黄洪春,等. 煤层气多分支水平井钻井工艺研究[J]. 石油学报,2007,28(3):112–115. doi: 10.3321/j.issn:0253-2697.2007.03.023

    QIAO Lei, SHEN Ruichen, HUANG Hongchun, et al. Drilling technology of multi-branch horizontal well[J]. Acta Petrolei Sinica, 2007, 28(3): 112–115. doi: 10.3321/j.issn:0253-2697.2007.03.023
    [16]
    温航,陈勉,金衍,等. 钻井液活度对硬脆性页岩破坏机理的实验研究[J]. 石油钻采工艺,2014,36(1):57–60. doi: 10.13639/j.odpt.2014.01.015

    WEN Hang, CHEN Mian, JIN Yan, et al. Experimental research on brittle shale failure caused by drilling fluid activity[J]. Oil Drilling & Production Technology, 2014, 36(1): 57–60. doi: 10.13639/j.odpt.2014.01.015
    [17]
    岳前升,陈军,邹来方,等. 沁水盆地基于储层保护的煤层气水平井钻井液的研究[J]. 煤炭学报,2012,37(增刊2):416–419. doi: 10.13225/j.cnki.jccs.2012.s2.009

    YUE Qiansheng, CHEN Jun, ZOU Laifang, et al. Research on coalbed methane drilling fluid for horizontal well based on coal reservoir protection in Qinshui Basin[J]. Journal of China Coal Society, 2012, 37(supplement2): 416–419. doi: 10.13225/j.cnki.jccs.2012.s2.009
    [18]
    袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12. doi: 10.11911/syztjs.2022002

    YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12. doi: 10.11911/syztjs.2022002
    [19]
    曹立虎,张遂安,王晶,等. 松软煤层水平孔生物酶可解堵钻井液研究[J]. 石油化工高等学校学报,2014,27(2):65–68. doi: 10.3969/j.issn.1006-396X.2014.02.014

    CAO Lihu, ZHANG Suian, WANG Jing, et al. Research of enzyme drilling fluid in soft coal seam[J]. Journal of Petrochemical Universities, 2014, 27(2): 65–68. doi: 10.3969/j.issn.1006-396X.2014.02.014
  • Related Articles

    [1]GUO Xiao, PANG Wei, ZHANG Xudong, WANG Haodong. Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging[J]. Petroleum Drilling Techniques, 2025, 53(1): 130-135. DOI: 10.11911/syztjs.2024123
    [2]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [3]ZHAO Xiangyang. Experimental Study on Influence of Solid Particles on Stress Sensitivity of Fractures in Tight Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 68-74. DOI: 10.11911/syztjs.2024050
    [4]GE Xiang, WEN Danni, YE Tairan, ZHANG Weifeng, ZHANG Shimao. Logging Evaluation Method of Flow Units in a Dolomite Reservoir in the 4th Member of the Leikoupo Formation in Western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120-127. DOI: 10.11911/syztjs.2023049
    [5]DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
    [6]Tang Jiatong. A New Calculation Method of Minimum Gas Volume Flow Rate for Gas Drilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 73-77. DOI: 10.11911/syztjs.201504013
    [7]Zeng Qingdong, Yao Jun. Experiment of Shale Failure Mechanism Based on Particle Flow Theory[J]. Petroleum Drilling Techniques, 2015, 43(1): 33-37. DOI: 10.11911/syztjs.201501006
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Li Yuansheng, Li Xiangfang, Teng Sainan, Zhang Qinghui. New Productivity Calculation Method Considering No Constant Starting Pressure Drop and High Velocity Non-Darcy Flow[J]. Petroleum Drilling Techniques, 2012, 40(2): 70-75. DOI: 10.3969/j.issn.1001-0890.2012.02.014
    [10]Yu Jifei, Li Li, He Baosheng, Guan Hongxiang, Li Weichao, Sui Xianfu. Wellhead Pressure Prediction Method during Well Shut-in for Offshore Flowing Oil Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 83-87. DOI: 10.3969/j.issn.1001-0890.2012.01.017
  • Cited by

    Periodical cited type(1)

    1. 钟森,赵祚培,王淑静,杜杰. 低品位砂岩气藏压裂技术研究及应用——以DF109H井为例. 天然气技术与经济. 2024(04): 32-36+72 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return