TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop [J]. Petroleum Drilling Techniques,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104
Citation: TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop [J]. Petroleum Drilling Techniques,2022, 50(5):42-49. DOI: 10.11911/syztjs.2022104

Numerical Simulation of the Effects of Eccentric Rotation of the Drill String on Annular Frictional Pressure Drop

More Information
  • Received Date: April 21, 2022
  • Revised Date: July 30, 2022
  • Accepted Date: August 21, 2022
  • Available Online: November 03, 2022
  • Accurate prediction of the annular frictional pressure drop under eccentric rotation of drill string is an important theoretical basis for managed pressure drilling (MPD) in complex structure wells. However, the conventional calculation methods for the annular frictional pressure drop of drilling fluid cannot be directly applied to calculating the annular frictional pressure drop in complex structure wells. For this reason, the influences of eccentricity (0−67.42%) and the rotational speed (0−114.65 r/min)of the drill string on the frictional pressure drop gradient in a typical annulus (created by a ϕ127.0 mm drill pipe and a ϕ215.9 mm wellbore) were analyzed. The results show that when the eccentricity is lower than 45.00%, the rotational speed and eccentricity have a weak influence on the frictional pressure drop gradient. Specifically, the frictional pressure drop gradient decreases slightly with the increase of rotational speed but increases with the increase of eccentricity; when the eccentricity is higher than 45.00%, the frictional pressure drop gradient decreases with the increase of eccentricity at low rotational speed(<60 r/min), and the friction pressure drop gradient increases slightly with the increase of eccentricity at high rotational speed (>60 r/min). According to the numerical simulation results, a dimensionless frictional pressure drop gradient prediction model with eccentricity classification was built. The equivalent circulating density (ECD) of ϕ215.9 mm section of a horizontal well in the South China Sea was calculated by the proposed model. The results were then compared with the pressure-while-drilling (PWD) test results, with an average relative error of 0.45%, indicating that the proposed model has favorable accuracy. This study concludes that the proposed calculation model of the dimensionless annular frictional pressure drop under eccentric rotation can precisely describe the annular pressure field and ECD, and provide guidance for the hydraulic parameter optimization of MPD.

  • [1]
    朱丽华,向雪琳,邓玉涵,等. 控制压力钻井设备概述[J]. 钻采工艺,2010,33(3):43–47.

    ZHU Lihua, XIANG Xuelin, DENG Yuhan, et al. Summarization of managed pressure drilling equipment[J]. Drilling & Production Technology, 2010, 33(3): 43–47.
    [2]
    刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. doi: 10.11911/syztjs.2020034

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28. doi: 10.11911/syztjs.2020034
    [3]
    张洁,汤明,蒋振新,等. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型[J]. 特种油气藏,2021,28(2):156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024

    ZHANG Jie, TANG Ming, JIANG Zhengxin, et al. Study on flow rules of Herschel-Bulkley fluid in concentric annulus of elliptical wellbore and simplified model for pressure drop calculation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024
    [4]
    蔡萌. 幂律流体偏心环空螺旋流压力梯度的数值计算[J]. 石油钻采工艺,2010,32(2):11–14. doi: 10.3969/j.issn.1000-7393.2010.02.003

    CAI Meng. Numerical calculation of pressure gradient of helical flow of power-law fluid in eccentric annulus[J]. Oil Drilling & Production Technology, 2010, 32(2): 11–14. doi: 10.3969/j.issn.1000-7393.2010.02.003
    [5]
    BAIRSTOW L, BERRY A. Two-dimensional solutions of Poisson’s and Laplace’s equations[J]. Proceedings of the Royal Society A, 1919, 95(672): 457–475.
    [6]
    HEYDA J F. A green’s function solution for the case of laminar incompressible flow between non-concentric circular cylinders[J]. Journal of the Franklin Institute, 1959, 267(1): 25–34. doi: 10.1016/0016-0032(59)90034-1
    [7]
    REDBERGER P J, CHARLES M E. Axial laminar flow in a circular pipe containing a fixed eccentric core[J]. The Canadian Journal of Chemical Engineering, 1962, 40(4): 148–151. doi: 10.1002/cjce.5450400405
    [8]
    PIERCY N A V, HOOPER M S, WINNY H F. Viscous flow through pipes with cores[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 15(99): 647–676. doi: 10.1080/14786443309462212
    [9]
    TAO L N, DONOVAN W F. Through-flow in concentric and eccentric annuli of fine clearance with and without relative motion of the boundaries[J]. Transactions of the ASME, 1955, 77(8): 1291–1299.
    [10]
    DRYDEN H L, MURNAGHAN F D, BATEMAN H. Hydrodynamics[M]. New York: Dover Publications, 1956.
    [11]
    VAUGHN R D. Axial laminar flow of non-Newtonian fluids in narrow eccentric annuli[J]. SPE Journal, 1965, 5(4): 277–280.
    [12]
    FERROUDJI H,HADJADJ A,NOFEI T,等. 偏心环空中幂率流体层流流动特性数值模拟研究[J]. 石油钻探技术,2020,48(4):37–42. doi: 10.11911/syztjs.2020066

    FERROUDJI H, HADJADJ A, NOFEI T, et al. Effects of the inner pipe rotation and rheological parameters on the axial and tangential velocity profiles and pressure drop of yield Power-Law fluid in eccentric annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37–42. doi: 10.11911/syztjs.2020066
    [13]
    MITSUISHI N, AOYAGI Y. Non-Newtonian fluid flow in an eccentric annulus[J]. Journal of Chemical Engineering of Japan, 1973, 6(5): 402–408.
    [14]
    IYOHO A W, AZAR J J. An accurate slot-flow model for non-Newtonian fluid flow through eccentric annuli[J]. SPE Journal, 1981, 21(5): 565–572.
    [15]
    LUO Yuejin, PEDEN J M. Flow of non-Newtonian fluids through eccentric annuli[J]. SPE Production Engineering, 1990, 5(1): 91–96. doi: 10.2118/16692-PA
    [16]
    刘希圣, 樊洪海, 丁岗. 幂律流体在定向井偏心环空内流动规律的研究[J]. 石油大学学报(自然科学版), 1988, 12(增刊1): 34−45.

    LIU Xisheng, FAN Honghai, DING Gang. A study on the flow properties of power law fluid in annuli of directional well[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1988, 12(supplement 1): 34−45.
    [17]
    刘希圣,崔海清. 幂律流体在倾斜旋转内管的偏心环空中层流流动近似解法[J]. 石油大学学报(自然科学版),1992,16(6):29–34.

    LIU Xisheng, CUI Haiqing. Approximate solution for laminar flow of power law fluid in inclined eccentric annulus with rotating inner pipe[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1992, 16(6): 29–34.
    [18]
    汪海阁,朱明亮. 屈服假塑性流体偏心环空流动的基本特征[J]. 钻采工艺,1997,20(6):5–12.

    WANG Haige, ZHU Mingliang. Basic characteristics of eccentric annular flow of yield pseudoplastic fluid[J]. Drilling & Production Technology, 1997, 20(6): 5–12.
    [19]
    汪海阁,苏义脑. Robertson-Stiff流体在偏心环空中的流动[J]. 应用数学和力学,1998,19(10):931–940.

    WANG Haige, SU Yinao. Flow of Robertson-Stiff fluids through an eccentric annulus[J]. Applied Mathematics and Mechanics, 1998, 19(10): 931–940.
    [20]
    吴疆. 偏心环空中非牛顿液轴向层流流动规律[J]. 石油钻采工艺,1985,7(2):1–14. doi: 10.13639/j.odpt.1985.02.001

    WU Jiang. Law of non-Newtonian fluid axial laminar flow in eccentric annulus[J]. Oil Drilling & Production Technology, 1985, 7(2): 1–14. doi: 10.13639/j.odpt.1985.02.001
    [21]
    HACIISLAMOGLU M. Practical pressure loss predictions in realistic annular geometries[R]. SPE 28304, 1994.
    [22]
    OOMS G, KAMPMAN-REINHARTZ B E. Influence of drillpipe rotation and eccentricity on pressure drop over borehole with Newtonian liquid during drilling[J]. SPE Drilling & Completion, 2000, 15(4): 249–253.
    [23]
    ESCUDIERA M P, GOULDSONA I W, OLIVEIRAB P J, et al. Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 92–103. doi: 10.1016/S0142-727X(99)00059-4
    [24]
    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[J]. Journal of Canadian Petroleum Technology, 2010, 49(12): 57–64. doi: 10.2118/141518-PA
    [25]
    KHATIBI M, WIKTORSKI E, SUI Dan, et al. Experimental study of frictional pressure loss for eccentric drillpipe in horizontal wells[R]. SPE 191046, 2018.
    [26]
    樊洪海. 实用钻井流体力学[M]. 北京: 石油工业出版社, 2014.

    FAN Honghai. Practical drilling fluid mechanics[M]. Beijing: Petroleum Industry Press, 2014.
    [27]
    韩志勇. 关于钻柱一次弯曲临界条件的考证[J]. 石油钻探技术,2009,37(2):1–4. doi: 10.3969/j.issn.1001-0890.2009.02.001

    HAN Zhiyong. An investigation of critical condition of drill string first order buckling[J]. Petroleum Drilling Techniques, 2009, 37(2): 1–4. doi: 10.3969/j.issn.1001-0890.2009.02.001
    [28]
    黄根炉,韩志勇. 设计井眼中钻柱轴向变形分析与计算[J]. 石油钻探技术,1999,27(6):4–6. doi: 10.3969/j.issn.1001-0890.1999.06.001

    HUANG Genlu, HAN Zhiyong. Analysis and calculations of axial deformation of drill string in borehole plan[J]. Petroleum Drilling Techniques, 1999, 27(6): 4–6. doi: 10.3969/j.issn.1001-0890.1999.06.001
    [29]
    张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698–704.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 698–704.
  • Related Articles

    [1]LI Yang, CAO Xiaopeng, ZHAO Qingmin, LIU Zupeng, XUE Zhaojie, JIANG Long. Thoughts on Shale Oil Development in Continental Fault Basin in Jiyang Depression[J]. Petroleum Drilling Techniques, 2024, 52(4): 1-7. DOI: 10.11911/syztjs.2024056
    [2]CHI Jiangong. Drilling Technologies for Horizontal Wells of Gulong Shale Oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12-17. DOI: 10.11911/syztjs.2023002
    [3]YUAN Jianqiang. Key Engineering Technologies for Three-Dimensional Development of Multiple Formations of Shale Oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1-8. DOI: 10.11911/syztjs.2023001
    [4]HE Licheng. A Cementing Technology for Horizontal Shale Oil Wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45-50. DOI: 10.11911/syztjs.2022062
    [5]XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
    [6]WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
    [7]JIA Qingsheng, ZHONG Anhai, ZHANG Zilin, DING Ran. Numerical Simulation of the Brittleness Anisotropy of Laminated Argillaceous Limestone Facies Shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84. DOI: 10.11911/syztjs.2021086
    [8]LU Baoping, DING Shidong, HE Long, PANG Wei. Key Achievement of Drilling & Completion Technologies for the Efficient Development of Low Permeability Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1-7. DOI: 10.11911/syztjs.2019027
    [9]Bu Yuhuan, Song Wenyu, He Yingjun, Shen Zhaochao. Discussion of a Method for Evaluating Cementing Quality with Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49-55. DOI: 10.11911/syztjs.201505009
    [10]Wan Xuxin. Analysis of the Causes and Countermeasures for Wellbore Instability in Cenozoic Erathem in Jiyang Depression[J]. Petroleum Drilling Techniques, 2012, 40(5): 1-6. DOI: 10.3969/j.issn.1001-0890.2012.05.001
  • Cited by

    Periodical cited type(2)

    1. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
    2. 倪华峰,杨光,张延兵. 长庆油田页岩油大井丛水平井钻井提速技术. 石油钻探技术. 2021(04): 29-33 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return