WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111
Citation: WU Tianqian, SONG Wenyu, TAN Lingfang, ZHANG Junyi, YANG Chunwen, GUO Shenglai. Evaluation Method for Cementing Quality of Ultra-Low-Density Cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65-70. DOI: 10.11911/syztjs.2021111

Evaluation Method for Cementing Quality of Ultra-Low-Density Cement

More Information
  • Received Date: February 27, 2021
  • Revised Date: November 22, 2021
  • Available Online: December 26, 2021
  • For an accurate cementing quality evaluation of ultra-low-density cement slurry, an indoor experiment was carried out to study the influence of parameters such as curing time, temperature, and density on the strength and acoustic properties of ultra-low-density cement stone. The relationship equation between the compressive strength of cement stone with different density and the acoustic velocities of P-waves and S-waves was obtained by mathematical fitting. In combination with the downhole acoustic field analysis of cased wells, an improved algorithm of relative acoustic amplitude was developed for the evaluation of ultra-low-density cement slurry logging based on compressive strength, and a correction type-curve of relative acoustic amplitude was built on that basis. The verification results showed that for the cement slurry of cenospheres, the relative acoustic amplitude corresponded well to compressive strength, and with the increase in compressive strength, the relative acoustic amplitude decreased. Under the same compressive strength, the relative acoustic amplitude was reduced with the growth of cement slurry density. The research demonstrates that the application of the correction type-curve of relative acoustic amplitude for the cementing quality evaluation of ultra-low-density cement slurry can significantly improve the accuracy and pertinence of cemen-ting quality evaluation.
  • [1]
    陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38.

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.
    [2]
    杨海波,曹成章,冯德杰,等. 新型低密度水泥减轻材料SXJ-1的研制及应用[J]. 石油钻探技术,2017,45(4):59–64.

    YANG Haibo, CAO Chengzhang, FENG Dejie, et al. The development and application of a new low density cement reducer SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4): 59–64.
    [3]
    李韶利. 1.15 g/cm3超低密度水泥浆的研究与应用[J]. 钻井液与完井液,2020,37(5):644–650.

    LI Shaoli. Study and application of an ultra-low-density cement slurry[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 644–650.
    [4]
    李早元,祁凌,刘锐,等. 空心微珠低密度水泥环完整性试验研究[J]. 石油钻探技术,2017,45(3):42–47.

    LI Zaoyuan, QI Ling, LIU Rui, et al. Experimental study on the integrity of low-density cement sheath with hollow microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42–47.
    [5]
    刘慧婷,付家文,丛谧,等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432–3437.

    LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high strength low-density cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3432–3437.
    [6]
    李盛清,林剑松,江灿,等. 随钻声波测井固井质量评价理论与数值模拟研究[J]. 地球物理学报,2020,63(7):2762–2773. doi: 10.6038/cjg2020N0086

    LI Shengqing, LIN Jiansong, JIANG Can, et al. Theoretical and numerical simulation of LWD acoustic cement logging[J]. Chinese Journal of Geophysics, 2020, 63(7): 2762–2773. doi: 10.6038/cjg2020N0086
    [7]
    韩耀图,李进,李疾翎,等. 超声兰姆波测井技术在渤海油田的应用研究[J]. 石油机械,2020,48(5):8–15.

    HAN Yaotu, LI Jin, LI Jiling, et al. Application of ultrasonic lamb wave logging technology in Bohai Oilfield[J]. China Petroleum Machinery, 2020, 48(5): 8–15.
    [8]
    张俊,夏宏南,孙清华,等. 几种固井质量评价测井方法分析[J]. 石油地质与工程,2008,22(5):121–123. doi: 10.3969/j.issn.1673-8217.2008.05.038

    ZHANG Jun, XIA Hongnan, SUN Qinghua, et al. Analysis of several cement evaluation methods[J]. Petroleum Geology and Engineering, 2008, 22(5): 121–123. doi: 10.3969/j.issn.1673-8217.2008.05.038
    [9]
    李万东. 关于非泡沫超低密度水泥浆体系应用的建议[J]. 钻井液与完井液,2020,37(5):656–663.

    LI Wandong. Suggestions on application of non-foam ultra-low-density cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 656–663.
    [10]
    SY/T 6641—2017 固井水泥胶结测井资料处理及解释规范[S].

    SY/T 6641—2017 Specification for logging data processing and interpreting of cement bond[S].
    [11]
    SY/T 6592—2016 固井质量评价方法[S].

    SY/T 6592—2016 Procedure for cement evaluation[S].
    [12]
    SY/T 6466—2016 油井水泥石性能试验方法[S].

    SY/T 6466—2016 Testing of set oilwell cement[S].
    [13]
    郑双进,程霖,龙震宇,等. 基于GA-SVR算法的顺北区块固井质量预测[J]. 石油钻采工艺,2021,43(4):467–473.

    ZHENG Shuangjin, CHENG Lin, LONG Zhenyu, et al. Predicting the cementing quality in Shunbei Block based on GA-SVR algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 467–473.
    [14]
    步玉环,宋文宇,何英君,等. 低密度水泥浆固井质量评价方法探讨[J]. 石油钻探技术,2015,43(5):49–55.

    BU Yuhuan, SONG Wenyu, HE Yingjun, et al. Discussion of a method for evaluating cementing quality with low-density cement slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49–55.
    [15]
    李早元,郑友志,郭小阳,等. 水泥浆性能对声波水泥胶结测井结果的影响[J]. 天然气工业,2008,28(7):60–62. doi: 10.3787/j.issn.1000-0976.2008.07.018

    LI Zaoyuan, ZHENG Youzhi, GUO Xiaoyang, et al. Influence of cement slurry properties on acoustic cement bond log[J]. Natural Gas Industry, 2008, 28(7): 60–62. doi: 10.3787/j.issn.1000-0976.2008.07.018
    [16]
    罗勇,宋文宇,步玉环,等. 低密度水泥固井质量评价方法的改进[J]. 天然气工业,2012,32(10):59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

    LUO Yong, SONG Wenyu, BU Yuhuan, et al. Improvement on the cementing quality assessment method for light-weight cement sheaths[J]. Natural Gas Industry, 2012, 32(10): 59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014
  • Cited by

    Periodical cited type(16)

    1. 贾轲. 莺歌海盆地高温高压井窄压力窗口ECD精细控制应用. 石化技术. 2024(01): 178-180 .
    2. 贾轲. 南海西部窄压力窗口低渗高压地层应对方法. 石化技术. 2024(03): 109-111 .
    3. 张文彬,狄明利,曾祥聪. HZ区块强承压堵漏技术研究与应用. 广东化工. 2023(04): 61-63+28 .
    4. 邢希金,谢仁军,邱正松,李佳,高健. 井壁强化技术的研究及其在乐东区块的应用. 钻井液与完井液. 2023(01): 67-72 .
    5. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 .
    6. 何雨,孟鐾桥,郑友志,吴柄燕,赵军,李斌. 渝西区块页岩气钻井防漏堵漏技术研究. 石油工业技术监督. 2023(07): 58-62 .
    7. 孙金声,李锐,王韧,屈沅治,黄宏军. 准噶尔盆地南缘井壁失稳机理及对策研究. 西南石油大学学报(自然科学版). 2022(01): 1-12 .
    8. 王荣,袁立山,罗垚,杨旭达,吕蓓,程家麒. 暂堵剂高温封堵机理及实验评价. 石油化工高等学校学报. 2022(02): 62-67 .
    9. 陈忠华,徐海军. 自制可调式蝶阀拆解工具在高温高压井中的应用. 化学工程与装备. 2021(02): 143-144 .
    10. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
    11. 于欣,张振,郭梦扬,李磊,范劲,邓正强. 抗高温油基钻井液堵漏剂的研制与应用——以龙马溪组页岩气井W204H为例. 断块油气田. 2021(02): 168-172 .
    12. 向雄,张立权,杨洪烈,刘喜亮,易鹏昌,彭天军. XX-1-B32超低压井钻井液技术研究与应用. 长江大学学报(自然科学版). 2021(02): 49-54+88 .
    13. 郭伟,娄益伟,韩成. 测试管汇在高温高压井井控中的应用. 化学工程与装备. 2021(05): 127-128+132 .
    14. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    15. 方胜杰. 莺琼盆地高温高压钻井液的开发. 化学工程与装备. 2020(05): 52-54 .
    16. 郎宝山. 稠油水平井大直径封漏堵水管柱的研制与应用. 特种油气藏. 2020(03): 157-162 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (498) PDF downloads (81) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return