MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
Citation: MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025

Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola

More Information
  • Received Date: August 19, 2020
  • Revised Date: February 19, 2021
  • Available Online: February 25, 2021
  • Due to severe planar-heterogeneity, water-displacing-oil front in deep-water turbidite reservoirs is unstable and may cause water channeling during water flooding. In order to investigate the feasibility and enhanced oil recovery mechanisms of water and gas alternating flooding and nitrogen foam flooding in planar-heterogeneous reservoirs, artificial core samples with different permeability contrasts were designed according to the geological data in core flooding experiments. Based on the history matching of experimental data via numerical simulation, fluid flow behavior was discussed in the heterogeneous core samples. The results showed that water and gas alternating flooding presented good ability in improving sweep efficiency and reducing water cut when the permeability contrast was small; however, its ability in controlling gas mobility was depressed and the enhanced oil recovery effect was decreased when the permeability contrast was large. Due to the selective plugging of nitrogen foam and the surfactant’s improving displacement efficiency, nitrogen foam flooding could still delay fluid channeling in high-permeability streaks of severe planar-heterogeneous core samples while presented the piston-like displacement in low-permeability streaks so as to achieve in-depth profile control and oil recovery improvement. Thus, nitrogen foam flooding could effectively enhance oil recovery in deep-water turbidite reservoirs and provide technical support for the economical and efficient development of such reservoirs.
  • [1]
    陈全红,李文厚,郭艳琴,等. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J]. 地质学报,2006,80(5):656–663.

    CHEN Quanhong, LI Wenhou, GUO Yanqin, et al. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the Southern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 656–663.
    [2]
    王金铎,韩文功,于建国,等. 东营凹陷沙三段浊积岩体系及其油气勘探意义[J]. 石油学报,2003,24(6):24–29.

    WANG Jinduo, HAN Wengong, YU Jianguo, et al. Turbidity system in the third section of Shahejie Formation of Dongying Sag and its implications on petroleum prospecting[J]. Acta Petrolei Sinica, 2003, 24(6): 24–29.
    [3]
    WYNN R B, WEAVER P P E, MASSON D G, et al. Turbidite depositional architecture across three inter-connected deep-water basins on the Northwest African Margin[J]. Sedimentology, 2002, 49(4): 669–695. doi: 10.1046/j.1365-3091.2002.00471.x
    [4]
    肖玲,田景春,魏钦廉,等. 鄂尔多斯盆地油坊庄油田长2油层组储层宏观非均质性研究[J]. 沉积与特提斯地质,2006,26(2):59–62.

    XIAO Ling, TIAN Jingchun, WEI Qinlian, et al. Inhomogeneity of the Chang-2 pay sets of the Youfangzhuang Oilfield in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(2): 59–62.
    [5]
    QIU Zhongyan, HAN Xiqiu, WANG Yejian. Turbidite events recorded in deep-sea core IR-GC1 off Western Sumatra: evidence from grain-size distribution[J]. Acta Geologica Sinica(English Edition), 2017, 91(4): 1448–1456. doi: 10.1111/1755-6724.13372
    [6]
    赵卫平. 井震联合属性分析技术在深水浊积岩储层预测中的应用[J]. 工程地球物理学报,2016,13(2):213–220. doi: 10.3969/j.issn.1672-7940.2016.02.014

    ZHAO Weiping. The application of well-seismic joint attribute analysis technique to the prediction of deep-water turbidite sand reservoir[J]. Chinese Journal of Engineering Geophysics, 2016, 13(2): 213–220. doi: 10.3969/j.issn.1672-7940.2016.02.014
    [7]
    HAUGHTON D W, BARKER S P, MCCAFFREY W D. ‘Linked’ debrites in sand-rich turbidite systems—origin and significance[J]. Sedimentology, 2003, 50(3): 459–482. doi: 10.1046/j.1365-3091.2003.00560.x
    [8]
    LI Zhaomin, ZHANG Chao, LI Songyan, et al. Experiment research of CO2 foam alternating CO2 displacement EOR technology in heterogeneous reservoir[J]. Journal of Petrochemical Universities, 2011, 24(6): 1–5.
    [9]
    刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术,2019,47(4):75–82.

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82.
    [10]
    汤瑞佳,王贺谊,余华贵,等. 水气交替注入对CO2驱油效果的影响[J]. 断块油气田,2016,23(3):358–362.

    TANG Ruijia, WANG Heyi, YU Huagui, et al. Effect of water and gas alternate injection on CO2 flooding[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 358–362.
    [11]
    李二党,韩作为,高祥瑞,等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术,2020,48(5):85–91.

    LI Erdang, HAN Zuowei, GAO Xiangrui, et al. Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85–91.
    [12]
    郝宏达,侯吉瑞,赵凤兰,等. 低渗透非均质油藏二氧化碳非混相驱窜逸控制实验[J]. 油气地质与采收率,2016,23(3):95–100. doi: 10.3969/j.issn.1009-9603.2016.03.017

    HAO Hongda, HOU Jirui, ZHAO Fenglan, et al. Experiments of gas channeling control during CO2 immiscible flooding in low permeability reservoirs with heterogeneity[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 95–100. doi: 10.3969/j.issn.1009-9603.2016.03.017
    [13]
    SUICMEZ V. S, PIRI M, BLUNT M J. Pore-scale simulation of water alternate gas injection[J]. Transport in Porous Media, 2007, 66(3): 259–286. doi: 10.1007/s11242-006-0017-9
    [14]
    廖辉,孔超杰,邓猛,等. 氮气泡沫驱提高采收率机理及影响因素研究进展[J]. 当代化工,2019,48(1):122–126.

    LIAO Hui, KONG Chaojie, DENG Meng, et al. Research progress of influence factors and mechanism of nitrogen foam flooding[J]. Contemporary Chemical Industry, 2019, 48(1): 122–126.
    [15]
    李文静,林吉生,徐国瑞,等. 绥中36-1油田氮气泡沫逐级调驱实验研究[J]. 科学技术与工程,2016,16(9):177–181. doi: 10.3969/j.issn.1671-1815.2016.09.030

    LI Wenjing, LIN Jisheng, XU Guorui, et al. A laboratory research on nitrogen foam flooding step by step in SZ36-1 Oilfield[J]. Science Technology and Engineering, 2016, 16(9): 177–181. doi: 10.3969/j.issn.1671-1815.2016.09.030
    [16]
    屈鸣,侯吉瑞,闻宇晨,等. 缝洞型油藏裂缝中泡沫辅助气驱运移特征[J]. 石油科学通报,2019,4(3):300–309.

    QU Ming, HOU Jirui, WEN Yuchen, et al. Migration features of foam-assisted gas drive in fractures of fracture-vuggy reservoirs[J]. Petroleum Science Bulletin, 2019, 4(3): 300–309.
    [17]
    屈鸣,侯吉瑞,马仕希,等. 缝洞型油藏溶洞储集体氮气泡沫驱注入参数及机理研究[J]. 石油科学通报,2018,3(1):57–66.

    QU Ming, HOU Jirui, MA Shixi, et al. Mechanism and parameters of nitrogen foam flooding in cave reservoir bodies of fractured-cavity reservoirs[J]. Petroleum Science Bulletin, 2018, 3(1): 57–66.
    [18]
    阳晓燕. 非均质油藏水驱开发效果研究[J]. 特种油气藏,2019,26(2):152–156.

    YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152–156.
    [19]
    姚传进,雷光伦,高雪梅,等. 非均质条件下孔喉尺度弹性微球深部调驱研究[J]. 油气地质与采收率,2012,19(5):61–64. doi: 10.3969/j.issn.1009-9603.2012.05.016

    YAO Chuanjin, LEI Guanglun, GAO Xuemei, et al. Study on indepth profile control and flooding of pore-scale elastic microspheres under heterogeneous condition[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(5): 61–64. doi: 10.3969/j.issn.1009-9603.2012.05.016
    [20]
    张莉,岳湘安,王友启. 基于非均质大模型的特高含水油藏提高采收率方法研究[J]. 石油钻探技术,2018,46(5):83–89.

    ZHANG Li, YUE Xiang’an, WANG Youqi. Research on large scale heterogeneous model based EOR methods for ultra-high water cut reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83–89.
    [21]
    刘泉海,罗福全,黄海龙,等. 边底水油藏化学驱提高采收率实验研究[J]. 特种油气藏,2017,24(6):143–147. doi: 10.3969/j.issn.1006-6535.2017.06.028

    LIU Quanhai, LUO Fuquan, HUANG Hailong, et al. Experimental study on enhanced oil recovery by chemical flooding in reservoir with edge and bottom water[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 143–147. doi: 10.3969/j.issn.1006-6535.2017.06.028
    [22]
    韦琦,侯吉瑞,郝宏达,等. 特低渗油藏CO2驱气窜规律研究[J]. 石油科学通报,2019,4(2):145–153.

    WEI Qi, HOU Jirui, HAO Hongda, et al. Laboratory study of CO2 channeling characteristics in ultra-low-permeability oil reservoirs[J]. Petroleum Science Bulletin, 2019, 4(2): 145–153.
    [23]
    屈鸣,侯吉瑞,李军,等. 缝洞型油藏三维可视化模型底水驱油水界面特征研究[J]. 石油科学通报,2018,3(4):422–433.

    QU Ming, HOU Jirui, LI Jun, et al. Research into characteristics of the oil-water interface during bottom water flooding in a fractured-vuggy reservoir by a 3-D visual model[J]. Petroleum Science Bulletin, 2018, 3(4): 422–433.
    [24]
    白玉杰,曹广胜,侯玉花,等. 超临界二氧化碳+水交替驱注入井极限关井时间计算[J]. 特种油气藏,2020,27(1):162–168.

    BAI Yujie, CAO Guangsheng, HOU Yuhua, et al. Limit shut-in period calculation of CO2 + water alternating injection well[J]. Special Oil & Gas Reserviors, 2020, 27(1): 162–168.
    [25]
    周涌沂,汪勇,田同辉,等. 改善平面非均质油藏水驱效果方法研究[J]. 西南石油大学学报,2007,29(4):82–85.

    ZHOU Yongyi, WANG Yong, TIAN Tonghui, et al. Research on the method of improving water-flooding effect for the reservoirs with plane heterogeneity[J]. Journal of Southwest Petroleum University, 2007, 29(4): 82–85.
    [26]
    张立娟,岳湘安,杨志国,等. 非均质高温油藏非混相水气交替实验研究[J]. 断块油气田,2015,22(6):776–780.

    ZHANG Lijuan, YUE Xiang,an, YANG Zhiguo, et al. Immiscible water-alternating-gas experiments in high-temperature heterogeneous reservoir[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 776–780.
    [27]
    SALEHI M M, SAFARZADEH M A, SAHRAEI E, et al. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process[J]. Journal of Petroleum Science and Engineering, 2014, 120: 86–93. doi: 10.1016/j.petrol.2014.05.017
    [28]
    元福卿,李冉,李兆敏,等. 低张力泡沫驱提高采收率的三维物理模拟研究[J]. 油田化学,2015,32(1):72–77.

    YUAN Fuqing, LI Ran, LI Zhaomin, et al. Three-dimensional physical simulation research of enhanced oil recovery in low tension foam flooding[J]. Oilfield Chemistry, 2015, 32(1): 72–77.
    [29]
    李松泉,程林松,李秀生,等. 特低渗透油藏非线性渗流模型[J]. 石油勘探与开发,2008,35(5):606–612.

    LI Songquan, CHENG Linsong, LI Xiusheng, et al. Nonlinear seepage flow of ultralow permeability reservoirs[J]. Petroleum Exploration and Development, 2008, 35(5): 606–612.
    [30]
    董平川, 牛彦良, 李莉. 各向异性油藏渗流的有限元数值模拟[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2633-2633.

    DONG Pingchuan, NIU Yanliang, LI Li. Finite element numerical simulation of seepage in an anisotropic reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(supplement 1): 2633-2633.
    [31]
    田敏,李楠,吴文瑞,等. 考虑启动压力梯度的油水两相渗流压力分布[J]. 复杂油气藏,2012,5(1):51–554. doi: 10.3969/j.issn.1674-4667.2012.01.014

    TIAN Min, LI Nan, WU Wenrui, et al. Pressure distribution of oil-water seepage considering start-up pressure gradient[J]. Complex Hydrocarbon Reservoirs, 2012, 5(1): 51–554. doi: 10.3969/j.issn.1674-4667.2012.01.014
    [32]
    胡渤. 不同渗透率和孔喉条件下泡沫流体的特性及调驱机理[J]. 油气地质与采收率,2016,23(4):70–75. doi: 10.3969/j.issn.1009-9603.2016.04.011

    HU Bo. Property of foam fluid and its mechanism of profile control and displacement in the reservoirs with different permeabilities and pore-throats[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 70–75. doi: 10.3969/j.issn.1009-9603.2016.04.011
    [33]
    张云宝,徐国瑞,邹剑,等. 三相泡沫体系堵水效果及影响因素实验研究[J]. 油气藏评价与开发,2019,9(2):44–49,82.

    ZHANG Yunbao, XU Guorui, ZOU Jian, et al. Experimental study on water plugging effect and influence factors of three phase foam system[J]. Reservoir Evaluation and Development, 2019, 9(2): 44–49,82.
  • Related Articles

    [1]GUO Xiao, PANG Wei, ZHANG Xudong, WANG Haodong. Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging[J]. Petroleum Drilling Techniques, 2025, 53(1): 130-135. DOI: 10.11911/syztjs.2024123
    [2]DAI Ling, JIANG Renkai, SUN Changwei, PEI Bolin, ZHAO Wei. Water Control through Particle Huff and Puff for Horizontal Wells with Severe Fluid Loss in Fractured-Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 91-97. DOI: 10.11911/syztjs.2024013
    [3]ZHAO Xiangyang. Experimental Study on Influence of Solid Particles on Stress Sensitivity of Fractures in Tight Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 68-74. DOI: 10.11911/syztjs.2024050
    [4]GE Xiang, WEN Danni, YE Tairan, ZHANG Weifeng, ZHANG Shimao. Logging Evaluation Method of Flow Units in a Dolomite Reservoir in the 4th Member of the Leikoupo Formation in Western Sichuan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(6): 120-127. DOI: 10.11911/syztjs.2023049
    [5]DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
    [6]Tang Jiatong. A New Calculation Method of Minimum Gas Volume Flow Rate for Gas Drilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 73-77. DOI: 10.11911/syztjs.201504013
    [7]Zeng Qingdong, Yao Jun. Experiment of Shale Failure Mechanism Based on Particle Flow Theory[J]. Petroleum Drilling Techniques, 2015, 43(1): 33-37. DOI: 10.11911/syztjs.201501006
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Li Yuansheng, Li Xiangfang, Teng Sainan, Zhang Qinghui. New Productivity Calculation Method Considering No Constant Starting Pressure Drop and High Velocity Non-Darcy Flow[J]. Petroleum Drilling Techniques, 2012, 40(2): 70-75. DOI: 10.3969/j.issn.1001-0890.2012.02.014
    [10]Yu Jifei, Li Li, He Baosheng, Guan Hongxiang, Li Weichao, Sui Xianfu. Wellhead Pressure Prediction Method during Well Shut-in for Offshore Flowing Oil Wells[J]. Petroleum Drilling Techniques, 2012, 40(1): 83-87. DOI: 10.3969/j.issn.1001-0890.2012.01.017
  • Cited by

    Periodical cited type(1)

    1. 钟森,赵祚培,王淑静,杜杰. 低品位砂岩气藏压裂技术研究及应用——以DF109H井为例. 天然气技术与经济. 2024(04): 32-36+72 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (710) PDF downloads (74) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return