Citation: | CHEN Zuo, LI Shuangming, CHEN Zan, WANG Haitao. Hydraulic Fracture Initiation and Extending Tests in Deep Shale Gas Formations and Fracturing Design Optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70-76. DOI: 10.11911/syztjs.2020060 |
Due to geological structure, diagenesis and other factors, deep shale presents different characteristics compared with that in medium-deep formations in terms of bedding development degree, brittleness index, rock mechanical characteristics, in-situ stress gradient and horizontal stress difference. Taken together, theseresult in higher fracture initiation pressure and less complicated fractures geometry and greatly affect fracturing volume design and operation safety in deep shale gas formations. Experimental study on the initiation and expansion characteristics of artificial fractures was conducted. A large cubic rock sample (300 mm×300 mm×300 mm) was used to investigate the influential effects of horizontal stress difference, viscosity of fracturing fluid and pumping flow rate, and the temporary blocking within fractures in hydraulic fracturing. The investigation showed that fracture initiation and propagation are largely affected by those factors as strength of bedding cementation, horizontal stress difference and pad viscosity. Fractures are prone to initiate along bedding planes, resulting in early overpressure and operation failure. Fracture growth pattern is relatively simple under high stress difference, but measures such as using medium-level viscous fracturing fluid to temporarily block flow within fractures can help the generation of multiple fractures and secondary fractures for more complex fracture networks. On this basis, the design optimization of fracturing that incorporates techniques such as densely subdivided stages, short cluster perforations, fluids combination and variable flow rate operation were advanced, and an important breakthrough was made in deep shale gas production after the field application of the optimized design features.
[1] |
曾义金, 陈作, 卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 2016, 36(1): 61–67.
ZENG Yijin, CHEN Zuo, BIAN Xiaobing. Breakthrough and understanding of staged fracturing technology implemented in Southeast Sichuan deep shale gas play[J]. Natural Gas Industry, 2016, 36(1): 61–67.
|
[2] |
陈作, 曾义金. 深层页岩气分段压裂技术现状与发展建议[J]. 石油钻探技术, 2016, 44(1): 6–11.
CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.
|
[3] |
王海涛, 蒋廷学, 卞晓冰, 等. 深层页岩压裂工艺优化与现场试验[J]. 石油钻探技术, 2016, 44(2): 76–81.
WANG Haitao, JIANG Tingxue, BIAN Xiaobing, et al. Optimization and field application of hydraulic fracturing techniques in deep shale gas reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76–81.
|
[4] |
柳占立, 庄茁, 孟庆国, 等. 页岩气高效开采的力学问题与挑战[J]. 力学学报, 2017, 49(3): 507–516.
LIU Zhanli, ZHUANG Zhuo, MENG Qingguo, et al. Problems and challengs of mecanics in shale gas efficient exploition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507–516.
|
[5] |
张旭, 蒋廷学, 贾长贵, 等. 页岩气储层水力压裂物理模拟试验研究[J]. 石油钻探技术, 2013, 41(2): 70–74.
ZHANG Xu, JIANG Tingxue, JIA Changgui, et al. Physical simulation of hydraulic fracturing of shale gas reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70–74.
|
[6] |
郭印同, 杨春和, 贾长贵, 等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59.
GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.
|
[7] |
曹学军,王明贵,康杰,等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业, 2019, 39(7): 81–87.
CAO Xuejun,WANG Minggui,KANG Jie,et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, Southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 81–87.
|
[8] |
冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术, 2017, 45(6): 77–82.
FENG Guoqiang,ZHAO Liqiang,BIAN Xiaobing,et al. Multi-scale hydraulic fracturing of horizontal well in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.
|
[9] |
路保平. 中国石化页岩气工程技术进步及展望[J]. 石油钻探技术, 2013, 41(5): 1–8.
LU Baoping. Sinopec engineering technical advance and its developing tendency in shale gas[J]. Petroleum Drilling Techniques, 2013, 41(5): 1–8.
|
[10] |
曾义金. 页岩气开发的地质与工程一体化技术[J]. 石油钻探技术, 2014, 42(1): 1–6.
ZENG Yijin. Integration technology of geology engineering for shale gas development[J]. Petroleum Drilling Techniques, 2014, 42(1): 1–6.
|
[11] |
陈作, 薛承瑾, 蒋廷学, 等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业, 2010, 30(10): 30–32.
CHEN Zuo, XUE Chengjin, JIANG Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume(SRV) in shale gas wells in China[J]. Natural Gas Industry, 2010, 30(10): 30–32.
|
[12] |
GRIESER W V, TALLEY C A. Post-frac production analysis of horizontal completions in CANA Woodford shale[R].SPE 151223, 2012.
|
[13] |
POPE C D, PALISCH T T, LOLON E, et al. Improving stimulation effectiveness: field results in the Haynesville shale[R]. SPE 134165, 2010.
|
[14] |
贾长贵, 路保平, 蒋廷学, 等. DY2HF深层页岩气水平井分段压裂技术[J]. 石油钻探技术, 2014, 42(2): 85–90.
JIA Changgui, LU Baoping, JIANG Tingxue, et al. Multi-stage horizontal well fracturing technology in deep shale gas well DY2HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85–90.
|
[1] | HAO Xiaolong, GAO Guoyin, TAN Haifeng, YANG Cheng, LI Yuehuan. Downhole Compression Algorithm for Remote Detection Acoustic Logging Data Based on Adaptive Differential Pulse Code Modulation[J]. Petroleum Drilling Techniques, 2024, 52(6): 148-155. DOI: 10.11911/syztjs.2024078 |
[2] | WANG Jianlong, WANG Yuezhi, QIU Weihong, YU Chen, ZHANG Feifei, WANG Xueying. Drilling Intelligent Decision Support System Based on Big Data and Fusion Model[J]. Petroleum Drilling Techniques, 2024, 52(5): 105-116. DOI: 10.11911/syztjs.2024102 |
[3] | PEI Xueliang, HUANG Zhe. Exploration and Suggestion of Key Technologies for Intelligent Drilling in Sinopec Shengli Oilfield Service Corporation[J]. Petroleum Drilling Techniques, 2024, 52(5): 62-68. DOI: 10.11911/syztjs.2024087 |
[4] | ZENG Yijin, LI Daqi, CHEN Zengwei, ZHANG Dujie, CUI Yahui, ZHANG Feifei. Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1-11. DOI: 10.11911/syztjs.2023108 |
[5] | ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094 |
[6] | ZHU Zuyang, WU Haiyan, ZHANG Lin, LI Fengbo, ZHAO Jinhai, ZHANG Wei. Microchip Tracer Power Supply Technology and Downhole Testing[J]. Petroleum Drilling Techniques, 2018, 46(1): 122-127. DOI: 10.11911/syztjs.2018012 |
[7] | Ma Hai, Xiao Hongbing, Yang Jinzhou, Li Yonghua. A Real-Time LWD Data Processing Method Based on Akima Interpolation[J]. Petroleum Drilling Techniques, 2015, 43(3): 82-86. DOI: 10.11911/syztjs.201503016 |
[8] | Liu Qiguo, Liu Zhenping, Wang Hongyu, Chen Xing, Cai Rushuai, Qin Ke. A Method to Calculate Gas Well Controlled Reserves and Water Influx from Production Data[J]. Petroleum Drilling Techniques, 2015, 43(1): 96-99. DOI: 10.11911/syztjs.201501016 |
[9] | Zhu Zuyang, Li Guangquan, Zhang Wei, Li Sanguo, Ni Weining. Research and Manufacture of a Microchip-Tracer Used in Drilling Fluids While Drilling[J]. Petroleum Drilling Techniques, 2013, 41(5): 111-114. DOI: 10.3969/j.issn.1001-0890.2013.05.022 |
1. |
胜亚楠,李伟廷,管志川,蒋金宝,兰凯,孔华,郭文军. 基于测井资料的含不确定度地层压力区域三维模型构建. 断块油气田. 2021(01): 89-93 .
![]() | |
2. |
胜亚楠,管志川,李伟廷,蒋金宝,晁文学,孔华. 基于贝叶斯理论的含可信度孔隙压力随钻修正方法. 石油钻采工艺. 2020(03): 265-270 .
![]() | |
3. |
张宁波. 固井工程数据实时采集与远程传输技术探讨. 电子技术与软件工程. 2015(03): 206 .
![]() | |
4. |
龚铭,夏宏泉,陈颖杰. 川东黑楼门构造地层三压力剖面的建立及应用. 国外测井技术. 2015(01): 34-37+57+3-4 .
![]() | |
5. |
朱庚雪,刘得军,张颖颖,王政,赖天祥. 基于hp-FEM的随钻电磁波测井仪器响应正演分析. 石油钻探技术. 2015(02): 63-70 .
![]() | |
6. |
蔡军,李文拓,刘鹏,陈鸣,郑金龙,程远方. 琼东南盆地深水区探井随钻压力监测技术与应用. 天然气工业. 2015(10): 99-105 .
![]() |