ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108
Citation: ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis [J]. Petroleum Drilling Techniques,2023, 51(6):1-11. DOI: 10.11911/syztjs.2023108

Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis

More Information
  • Received Date: November 16, 2022
  • Revised Date: November 12, 2023
  • Available Online: November 21, 2023
  • The Block A in the western part of the Tarim Basin are mainly karst-vuggy and fractured reservoirs. Eighteen fault zones are developed in the block. The natural fractures located near the fault zones have complex distribution and low bearing capacity of the formation, which are prone to lost circulation. In order to accurately avoid the risk of lost circulation and optimize the technical measures to deal with the lost circulation, natural language processing technology was used to extract all the drilling and completion data and lost circulation information of Block A. Based on big data analysis, the uncertainty distribution of the equivalent density of the actual formation pressure and the actual fracture pressure in the leaky formation was summarized. The uncertainty range of fracture development and fracture width, as well as the lost circulation risk coefficient of the leaky formation were calculated, and the pre-drilling lost circulation risk diagnosis method was established. The case analysis showed that the proposed method could be used to diagnose the risk of lost circulation before drilling, which can provide a basis for avoiding the risk of lost circulation and developing the technical measures for lost circulation treatment during drilling and completion.

  • [1]
    汪蓬勃. 基于巨厚盐膏层以及碳酸盐储层的钻井技术研究[D]. 成都: 西南石油大学, 2015.

    WANG Pengbo. Research on the drilling technique based on the layer of thick salt paste and carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015.
    [2]
    房超,张辉,陈朝伟,等. 地质工程一体化漏失机理与预防措施:以塔里木库车山前古近系复合盐层为例[J]. 石油钻采工艺,2022,44(6):684–692. doi: 10.13639/j.odpt.2022.06.004

    FANG Chao, ZHANG Hui, CHEN Zhaowei,et al. Geology-engineering integrated investigation of leakoff mechanisms and prevention measures: a case study of the Palaeogene composite salt layer in the Kuqa piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2022, 44(6): 684–692. doi: 10.13639/j.odpt.2022.06.004
    [3]
    马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005

    MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for Block Wushi17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 558–564. doi: 10.12358/j.issn.1001-5620.2022.05.005
    [4]
    AL MENHALI S, KASHWANI G, SAHWANI A. Safety engineering controls of lost circulation during cementing in onshore oil construction projects[J]. International Journal of Materials Engineering, 2015, 5(3): 46-49.
    [5]
    AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al. Mud losses estimation using partial least squares algorithm[R]. SPE 193266, 2018.
    [6]
    WIBOWO H B, JULIANTO C, BUNTORO A, et al. Mud weight evaluation based on safe mud window in drilling Well “X-1” to overcome caving and partial loss problems in the oil field[J]. IOP Conference Series: Earth and Environmental Science, 2021, 830: 012074.
    [7]
    李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2023,51(1):9–15. doi: 10.11911/syztjs.2022037

    LI Shuanggui, LUO Jiang, YU Yang, et al. Establishing pressure profiles and casing program optimization in the Southern Shunbei No.5 Fault Zone[J]. Petroleum Drilling Techniques, 2023, 51(1): 9–15. doi: 10.11911/syztjs.2022037
    [8]
    何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏 “一井多控”高效开发关键技术[J]. 石油钻探技术,2022,50(4):37–44.

    HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(4): 37–44.
    [9]
    马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17.

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17.
    [10]
    林波,云露,李海英,等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质,2021,42(6):1344–1353.

    LIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344–1353.
    [11]
    马海陇,王震,邓光校,等. 塔里木盆地和田河东地区断裂特征及其油气地质意义[J]. 断块油气田,2021,28(3):329–334. doi: 10.6056/dkyqt202103008

    MA Hailong, WANG Zhen, DENG Guangxiao, et al. Fault features in eastern Hetianhe Area,Tarim Basin and its petroleum geological significance[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 329–334. doi: 10.6056/dkyqt202103008
    [12]
    瞿长,赵 锐,李慧莉,等. 塔里木盆地顺北5断裂带储集体地震反射与产能特征分析[J]. 特种油气藏,2020,27(1):68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010

    QU Chang, ZHAO Rui, LI Huili, et al. Seismic reflection and productivity of reservoirs in the fault-zone 5 of Shunbei, Tarim Basin[J]. Special Oil & Gas Reservoir, 2020, 27(1): 68–74. doi: 10.3969/j.issn.1006-6535.2020.01.010
    [13]
    刘雨晴,邓尚,张荣,等. 深层火成岩侵入体和相关构造发育特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 石油与天然气地质,2022,43(1):105–117.

    LIU Yuqing, DENG Shang, ZHANG Rong, et al. Characterization and petroleum geological significance of deep igneous intrusions and related structures in the Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 105–117.
    [14]
    CHOWDHARY K R. Natural language processing[M]//CHOWDHARY K R. Fundamentals of artificial intelligence. New Delhi: Springer, 2020: 603–649.
    [15]
    MANNING C D, RAGHAVAN P, SCHÜTZE H. Introduction to information retrieval[M]. Cambridge: Cambridge University Press, 2008.
    [16]
    潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007
    [17]
    林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906–923.

    LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 Fault and No. 5 Fault in Shunbei Area[J]. Acta Petrolei Sinica, 2021, 42(7): 906–923.
    [18]
    LEE H P, OLSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275–288. doi: 10.1016/j.ijrmms.2018.01.005
    [19]
    王贵. 提高地层承压能力的钻井液封堵理论与技术研究[D]. 成都: 西南石油大学, 2012.

    WANG Gui. Theory and technology on drilling fluids for wellbore strengthening[D]. Chengdu: Southwest Petroleum University, 2012.
    [20]
    许成元. 裂缝性储层强化封堵承压能力模型与方法[D]. 成都: 西南石油大学, 2015.

    XU Chengyuan. Models and methods to strengthen wellbore pressure containment by fracture plugging in fractured reservoirs[D]. Chengdu: Southwest Petroleum University, 2015.
    [21]
    RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Comprehensive analysis of initiation and propagation pressures in drilling induced fractures[J]. Journal of Petroleum Science and Engineering, 2017, 149: 228–243. doi: 10.1016/j.petrol.2016.10.039
    [22]
    MAJIDI R, MISKA S Z, YU M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4): 509–517.
    [23]
    MAJIDI R, MISKA S Z, AHMED R, et al. Radial flow of yield-power-law fluids: Numerical analysis, experimental study and the application for drilling fluid losses in fractured formations[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 334–343. doi: 10.1016/j.petrol.2009.12.005
    [24]
    王斌. 裂缝性漏层钻井液漏失与堵漏计算机模拟研究[D]. 成都: 西南石油大学, 2019.

    WANG Bin. Computer simulation of drilling fluid loss and plugging in fractured formation[D]. Chengdu: Southwest Petroleum University, 2019.
    [25]
    陈曾伟,刘四海,林永学,等. 塔河油田顺西2井二叠系火成岩裂缝性地层堵漏技术[J]. 钻井液与完井液,2014,31(1):40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    CHEN Zengwei, LIU Sihai, LIN Yongxue, et al. Lost circulation control technology for fractured Permian igneous rock formation in Well Shunxi 2 of Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011
    [26]
    黄诚,云露,曹自成,等. 塔里木盆地顺北地区中–下奥陶统“断控”缝洞系统划分与形成机制[J]. 石油与天然气地质,2022,43(1):54–68.

    HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-ug system of the Middle-to-Lower Ordovician, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54–68.
    [27]
    彭军,夏梦,曹飞,等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏,2022,34(2):17–30.

    PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 Area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2): 17–30.
  • Related Articles

    [1]WANG Zhiyuan, LIU Hui, SUN Baojiang, LIU Hongtao, LOU Wenqiang. Numerical Study on Drilling Fluid Lost Circulation under Fluid-Solid Coupling in Deep Fractured Gas Reservoir[J]. Petroleum Drilling Techniques, 2025, 53(2): 52-61. DOI: 10.11911/syztjs.2025031
    [2]ZHANG Jing, ZHENG Bin, LI Hongying, LIU Yujuan, YAN Zhiming. Quantitative Study of Vertical Sweep Degree Between Injection andProduction Wells in Thick Oil Layers[J]. Petroleum Drilling Techniques, 2022, 50(2): 118-125. DOI: 10.11911/syztjs.2021124
    [3]DI Shiying, CHENG Shiqing, BAI Wenpeng, SHANG Ruyuan, PAN Youjun, SHI Wenyang. Simulation of Transformation from Water-Injection Huff and Puff to Unstable Water-Flooding in Developing Fractured Tight Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 89-96. DOI: 10.11911/syztjs.2021135
    [4]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [5]KANG Yili, ZHANG Jingyi, XU Chengyuan, YOU Lijun, LIN Chong. The Effect of Geometrical Morphology of Rigid Lost Circulation Material on Its Retention Behavior in Fractures[J]. Petroleum Drilling Techniques, 2018, 46(5): 26-34. DOI: 10.11911/syztjs.2018086
    [6]ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. DOI: 10.11911/syztjs.2018058
    [7]LIU Zhendong, MING Yuguang, WANG Chuanfu, LI Gongrang. The Development and Testing of Lost Circulation Position Detector[J]. Petroleum Drilling Techniques, 2017, 45(6): 55-59. DOI: 10.11911/syztjs.201706010
    [8]LI Daqi, ZENG Yijin, LIU Sihai, KANG Yili. Drilling Fluid Loss Model in Rough Fractures Based on Fractal Theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46-52. DOI: 10.11911/syztjs.201704008
    [9]YU Lei, ZHANG Jinghui, LIU Baofeng, SUN Ronghua, JI Yibing, LIU Chuanqing. Study and Application of Borehole Stabilization Technology in Shale Strata Containing Micro-Fractures[J]. Petroleum Drilling Techniques, 2017, 45(3): 27-31. DOI: 10.11911/syztjs.201703005
    [10]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
  • Cited by

    Periodical cited type(6)

    1. 杨清纯,山丽洁,王伟,赵新波,李亚龙,张立松. 基于Rosenbluthe改进方法的地层坍塌压力不确定性分析. 石油物探. 2025(01): 187-198 .
    2. 吴艳辉,黄洪林,罗鸣,李文拓,马传华,代锐,李军. 深水深层高温高压裂缝性呼吸效应动态响应特征. 钻井液与完井液. 2025(02): 167-179 .
    3. 何旭晟,周井红,管桐,代红,魏攀峰,潘孝青. 地质工程原生数据预测深层小尺度裂缝性地层漏失特征. 石油钻采工艺. 2024(01): 33-44 .
    4. 王建龙,王越支,邱卫红,于琛,张菲菲,王学迎. 基于大数据与融合模型的钻井智能辅助决策系统. 石油钻探技术. 2024(05): 105-116 . 本站查看
    5. 曾义金,王敏生,光新军,王果,张洪宝,陈曾伟,段继男. 中国石化智能钻井技术进展与展望. 石油钻探技术. 2024(05): 1-9+171 . 本站查看
    6. 常启帆,杨煦旻,朱方辉,金龙,刘伟,郑力会. 针对弱规范石油文档的自然语言数据收集方法. 石油钻采工艺. 2024(04): 509-524 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (390) PDF downloads (170) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return