CHEN Lei, ZHOU Shiming, ZHAO Yan, GAO Yuan, TAN Chunqin, XU Chunhu. Study of a Thermosetting Resin-Magnesia Cement Composite for Cementing[J]. Petroleum Drilling Techniques, 2019, 47(2): 74-80. DOI: 10.11911/syztjs.2019011
Citation: CHEN Lei, ZHOU Shiming, ZHAO Yan, GAO Yuan, TAN Chunqin, XU Chunhu. Study of a Thermosetting Resin-Magnesia Cement Composite for Cementing[J]. Petroleum Drilling Techniques, 2019, 47(2): 74-80. DOI: 10.11911/syztjs.2019011

Study of a Thermosetting Resin-Magnesia Cement Composite for Cementing

More Information
  • Received Date: November 05, 2018
  • Revised Date: February 14, 2019
  • Available Online: March 17, 2019
  • Due to the fact that a set cement is characterized by high brittleness and large volume shrinkage after cementing, and also that the cement sheath is easily damaged during large-scale fracturing and production process, resulting in poor bonding quality and causing sustained casing pressure (SCP), etc., research on the composite material, i.e. thermosetting resin-magnesia cement was conducted. The thermosetting resin, magnesia cement skeleton material and curing agent were optimized, and a team developed coagulator and composite material of thermosetting resin and magnesia cement. An indoor test showed that the composite material had the density of 1.1–1.8 g/cm3, compressive strength of more than 14.0 MPa after 24 hours, and elastic modulus of 2–4 GPa, which can withstand stress fatigue damage of 70 MPa, and present better sealing and damage resistance than oil well cement. The field test results indicated that the composite material of thermosetting resin-magnesia cement was convenient for mixing at well site. Further, is was fully compatible with conventional well cementing equipment and process. It has with good field applicability and sealing effect. The research suggested that the composite material could completely solve the problems of oil well cement, even substitute the well cement for sealing the oil and gas layer, combined with SCP wells treatment and oil and gas wells abandonment, etc., so as to ensure the sealing integrity of oil and gas wells.

  • [1]
    钟启刚, 李杨, 卢东红. 提高水泥环韧性的实验研究[J]. 地震工程与工程震动, 1997, 17(4): 123–129.

    ZHONG Qigang, LI Yang, LU Donghong. Study on improving toughness of cement sheath[J]. Earthquake Engineering and Engineering Vibration, 1997, 17(4): 123–129.
    [2]
    李早元, 郭小阳, 罗发强, 等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
    [3]
    路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [4]
    沈凡, 黄绍龙, 孙政, 等. 水性环氧树脂−水泥−乳化沥青复合胶结体系的硬化机理[J]. 中南大学学报(自然科学版), 2012, 43(1): 105–110.

    SHEN Fan, HUANG Shaolong, SUN Zheng, et al. Hardening mechanism of waterborne epoxy−cement−emulsified asphalt bonding system[J]. Journal of Central South University (Science and Technology), 2012, 43(1): 105–110.
    [5]
    罗霄, 姚晓, 张亮, 等. 水乳树脂改善油井水泥石力学性能研究[J]. 石油天然气学报, 2010, 32(3): 285–289.

    LUO Xiao, YAO Xiao, ZHANG Liang, et al. Mechanical properties of waterborne epoxy resin modified cement[J]. Journal of Oil and Gas Technology, 2010, 32(3): 285–289.
    [6]
    瞿佳, 严思明, 许建华. 胶乳防腐水泥浆在元坝地区的应用[J]. 石油钻探技术, 2013, 41(3): 94–98. doi: 10.3969/j.issn.1001-0890.2013.03.018

    QU Jia, YAN Siming, XU Jianhua. Application of corrosion resistant latex cement slurry in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(3): 94–98. doi: 10.3969/j.issn.1001-0890.2013.03.018
    [7]
    王涛, 许仲梓. 环氧水泥砂浆的改性机理[J]. 南京化工大学学报, 1997, 19(2): 26–32.

    WANG Tao, XU Zhongzi. The mechnism of epoxy modification on cement mortar[J]. Journal of Nanjing University of Chemical Technology, 1997, 19(2): 26–32.
    [8]
    陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2014: 31-42.

    CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2014: 31-42.
    [9]
    陶谦, 陈星星. 四川盆地页岩气水平井B环空带压原因分析与对策[J]. 石油钻采工艺, 2017, 39(5): 588–593.

    TAO Qian, CHEN Xingxing. Causal analysis and countermeasures on B sustained casing pressure of shale-gas horizontal wells in the Sichuan Basin[J]. Oil Drilling & Production Technology, 2017, 39(5): 588–593.
  • Related Articles

    [1]GUO Shaokun, LI Jun, LIAN Wei, CAO Wei. Research Progress and Development Suggestions on Wellbore Integrity forCCUS Geological Storage[J]. Petroleum Drilling Techniques, 2025, 53(1): 144-154. DOI: 10.11911/syztjs.2024124
    [2]ZHOU Shiming, LU Peiqing. Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity[J]. Petroleum Drilling Techniques, 2024, 52(5): 35-41. DOI: 10.11911/syztjs.2024097
    [3]DING Shidong, LU Peiqing, GUO Yintong, LI Zaoyuan, LU Yunhu, ZHOU Shiming. Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments[J]. Petroleum Drilling Techniques, 2023, 51(4): 104-113. DOI: 10.11911/syztjs.2023076
    [4]WU Junxia, YI Weikai, SUN Peng, LIU Huanle. Integrity Assurance Technologies for Plugged Wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57-62. DOI: 10.11911/syztjs.2022027
    [5]XIE Guanbao, TENG Chunming, LIU Huajie. Study on the Influence of Salt Rock Creep on the Integrity of Cement Sheath Gas Seals[J]. Petroleum Drilling Techniques, 2022, 50(2): 78-84. DOI: 10.11911/syztjs.2021113
    [6]ZHANG Bo, LUO Fangwei, SUN Bingcai, XIE Junfeng, XU Zhixiong, LIAO Hualin. A Method for Wellbore Integrity Detection in Deep Oil and Gas Wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114-120. DOI: 10.11911/syztjs.2021127
    [7]HE Jibiao, PENG Xiaoping, LIU Junjun, QU Yong, YUAN Huan, PENG Bo. Development of an Anti-Deformation Cement Slurry under Alternative Loading and Its Application in Fuling Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35-40. DOI: 10.11911/syztjs.2020054
    [8]CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111
    [9]LI Zaoyuan, QI Ling, LIU Rui, GU Tao, SUN Jinfei. Experimental Study on the Integrity of Low-Density Cement Sheath with Hollow Microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42-47. DOI: 10.11911/syztjs.201703008
    [10]Zhang Laibin, Fan Jianchun, Zu Qiang. The Drilling Tool Integrity Management on the Basis of Risk-Based Inspection[J]. Petroleum Drilling Techniques, 2015, 43(3): 1-6. DOI: 10.11911/syztjs.201503001
  • Cited by

    Periodical cited type(27)

    1. 赵常青,谢磊,张皓月. 高压气动远控双胶塞水泥头研制与应用. 天然气勘探与开发. 2025(01): 97-106 .
    2. 刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向. 石油学报. 2024(01): 312-324 .
    3. 樊恒,冀宇,程思达,陈佳,李勇. 基于前馈解耦的固井水泥浆密度控制仿真研究. 石油管材与仪器. 2024(02): 47-53 .
    4. 代锐,肖平,李祝军,娄益伟,山永林,张浩峻. 改性玄武岩纤维对油井水泥力学性能的影响. 合成化学. 2024(10): 905-913 .
    5. 徐军浩. SiO_2-PEGMA/AA改性复合材料的制备及对油井水泥性能提升研究. 钻采工艺. 2024(05): 133-138 .
    6. 田晓勇,张京华,蒋海涛,蒋本强,苟旭东,古青,宋剑鸣. 尾管悬挂系统在高温、强碱、高盐环境失效分析与改进应用. 内蒙古石油化工. 2024(10): 4-7 .
    7. 刘开强,于骏杰,王海平,张夏雨,金诚,张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理. 材料导报. 2024(24): 130-135 .
    8. 郑友志,佘朝毅,付洪琼,郭小阳,汪瑶. 一种溶黏型仿生自愈合水泥浆体系. 天然气工业. 2023(05): 63-70 .
    9. 黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
    10. 张怀文,马立国,王琦,李勇,米凯夫,王兆会. 固井自动监控水泥头及闸阀系统研制与应用. 石油机械. 2022(06): 16-21 .
    11. 易浩,杨卫星,赫英状,李斐,路飞飞. 新型封隔式固井分级箍的研制与应用. 钻采工艺. 2022(03): 104-108 .
    12. 姚勇,李小江,魏浩光,杨红歧,张建华,罗龙. 纳米硅乳液水泥浆体系在川东北元坝地区的应用. 钻采工艺. 2022(04): 141-146 .
    13. 范松,李小兵,张怀文,李鹏,刘姣利,马太清,赵明建. HJQ4-05型大流量固井液自动混浆橇研制. 石油矿场机械. 2022(05): 65-72 .
    14. 谢斌,陈超峰,马都都,练章华,史君林. 超深高温高压井尾管悬挂器安全性评价新方法. 天然气工业. 2022(09): 93-101 .
    15. 姜政华,孙钢,陈士奎,李伯尧,董红烨. 南川页岩气田超长水平段水平井钻井关键技术. 石油钻探技术. 2022(05): 20-26 . 本站查看
    16. 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
    17. 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 . 本站查看
    18. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    19. 迟焕鹏,胡志方,王胜建,张家政,吴迪,李大勇,薛宗安. 鄂西地区黄陵背斜页岩气钻井难点与对策. 钻采工艺. 2021(02): 21-25 .
    20. 胡晋军,张立丽,张耀,孟庆祥,黄志刚. 埕海油田大斜度井超短尾管固井技术. 石油钻探技术. 2021(03): 81-86 . 本站查看
    21. 范红康,刘劲歌,臧艳彬,周贤海,艾军,宋争. 涪陵页岩气田焦石坝区块调整井钻井技术. 石油钻探技术. 2021(03): 48-54 . 本站查看
    22. 汪海阁,黄洪春,毕文欣,纪国栋,周波,卓鲁斌. 深井超深井油气钻井技术进展与展望. 天然气工业. 2021(08): 163-177 .
    23. 张浩,徐拴海,杨雨,韩永亮,张卫东,李永强. 地热井固井材料导热性能影响因素. 煤田地质与勘探. 2020(02): 195-201 .
    24. 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 . 本站查看
    25. 孙斌. 高温高压固井装备技术及发展方向. 中国石油和化工标准与质量. 2020(17): 234-235 .
    26. 李延伟. 聚羧酸超塑化剂与纳米SiO_2颗粒协同作用对固井水泥浆性能的影响. 硅酸盐通报. 2020(10): 3121-3125 .
    27. 张洪楠. 石油钻井技术及固井技术的发展. 化工管理. 2020(31): 77-78 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return