GUO Shaokun, LI Jun, LIAN Wei, et al. Research progress and development suggestions on wellbore integrity for CCUS geological storage [J]. Petroleum Drilling Techniques, 2025, 53(1):144−154. DOI: 10.11911/syztjs.2024124
Citation: GUO Shaokun, LI Jun, LIAN Wei, et al. Research progress and development suggestions on wellbore integrity for CCUS geological storage [J]. Petroleum Drilling Techniques, 2025, 53(1):144−154. DOI: 10.11911/syztjs.2024124

Research Progress and Development Suggestions on Wellbore Integrity forCCUS Geological Storage

More Information
  • Received Date: July 14, 2023
  • Revised Date: November 14, 2024
  • Accepted Date: November 23, 2024
  • Available Online: November 25, 2024
  • The gas leakage and escape during the implementation of CO2 geological utilization and storage will affect the engineering effect and threaten the safety of personnel and the environment. Wellbore is a high-risk pathway for CO2 leakage, and wellbore integrity is of great significance to ensure the long-term stability of CO2 storage. To address the issue of gas leakage caused by wellbore sealing failure in CO2 geological storage, the failure mechanism and influencing factors of wellbore integrity under CO2 injection and storage conditions were analyzed based on the summary of relevant research results in China and abroad, and the wellbore integrity problems that may occur under different geological storage conditions were discussed. According to the current status of Chinese CO2 geological storage technology, countermeasures and suggestions for wellbore integrity were given, including optimizing the design of the cement slurry system and construction parameters, selecting storage formation and pipe string materials, strengthening the research on CO2 leakage monitoring technologies, combining preventive measures with response measures, and developing a complete technical system.

  • [1]
    王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6. doi: 10.11911/syztjs.2021070

    WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6. doi: 10.11911/syztjs.2021070
    [2]
    赵震宇,姚舜,杨朔鹏,等. “双碳”目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学,2023,44(2):1128–1138.

    ZHAO Zhenyu, YAO Shun, YANG Shuopeng, et al. Under goals of carbon peaking and carbon neutrality: Status, problems, and suggestions of CCUS in China[J]. Environmental Science, 2023, 44(2): 1128–1138.
    [3]
    刘瑛,王香增,杨红,等. CO2驱油与封存安全监测体系的构建及实践:以黄土塬地区特低渗透油藏为例[J]. 油气地质与采收率,2023,30(2):144–152.

    LIU Ying, WANG Xiangzeng, YANG Hong, et al. Establishment and practice of safety monitoring system during CO2 flooding and storage: a case study of ultra-low permeability reservoirs in loess tableland[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 144–152.
    [4]
    任韶然,李德祥,张亮,等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报,2014,35(3):591–601. doi: 10.7623/syxb201403024

    REN Shaoran, LI Dexiang, ZHANG Liang, et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica, 2014, 35(3): 591–601. doi: 10.7623/syxb201403024
    [5]
    ABANADES J C, AKAI M, BENSON S, et al. IPCC special report on carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005.
    [6]
    李阳,王锐,赵清民,等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报,2023,8(4):391–397. doi: 10.3969/j.issn.2096-1693.2023.04.030

    LI Yang, WANG Rui, ZHAO Qingmin, et al. Status and prospects for CO2 capture, utilization and storage technology in China[J]. Petroleum Science Bulletin, 2023, 8(4): 391–397. doi: 10.3969/j.issn.2096-1693.2023.04.030
    [7]
    李阳,王敏生,薛兆杰,等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术,2023,51(4):11–19. doi: 10.11911/syztjs.2023025

    LI Yang, WANG Minsheng, XUE Zhaojie, et al. Thoughts on green and low-carbon oil and gas development engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 11–19. doi: 10.11911/syztjs.2023025
    [8]
    PATIL P A, CHIDAMBARAM P, EBINING AMIR M S B, et al. Safeguarding CO2 storage by restoring well integrity using leakage rate modeling LRM along wellbore in depleted gas fields offshore Sarawak[R]. SPE 205537, 2021.
    [9]
    PATIL P A, CHIDAMBARAM P, BIN EBINING AMIR M S, et al. FEP based model development for assessing well integrity risk related to CO2 storage in central Luconia gas fields in Sarawak[R]. IPTC 21472, 2021.
    [10]
    高德利,窦浩宇,董雪林. 二氧化碳注入条件下井筒水泥环完整性若干研究进展[J]. 延安大学学报(自然科学版),2022,41(3):1–9.

    GAO Deli, DOU Haoyu, DONG Xuelin. Research progress in wellbore cement sheath integrity under conditions of CO2 injection and storage[J]. Journal of Yan’an University(Natural Science Edition), 2022, 41(3): 1–9.
    [11]
    ZHANG Jingtian, MU Lingyu, GUO Qingfeng, et al. Research on well integrity during CO2 geological utilization and storage based on CT scanning technique[R]. CMTC 553321, 2019.
    [12]
    DOU Ninghui, HU Zhiqiang, WANG Zhiyuan, et al. Risk assessment of annular pressure caused by tubing leakage in offshore gas wells with high CO2[J]. Geofluids, 2023, 2023(1): 9072217.
    [13]
    LI Ben, ZHOU Fujian, LI Hui, et al. Prediction of CO2 leakage risk for wells in carbon sequestration fields with an optimal artificial neural network[J]. International Journal of Greenhouse Gas Control, 2018, 68: 276–286. doi: 10.1016/j.ijggc.2017.11.004
    [14]
    李杨. 二氧化碳地质存储过程中井筒完整性研究[D]. 大庆:东北石油大学,2016.

    LI Yang. Research on well integrity during carbon dioxide geological sequestration[D]. Daqing: Northeast Petroleum University, 2016.
    [15]
    刘永忠,王乐,张甲六. 封存CO2的泄漏过程预测与泄漏速率的影响因素特性[J]. 化工学报,2012,63(4):1226–1233. doi: 10.3969/j.issn.0438-1157.2012.04.033

    LIU Yongzhong, WANG Le, ZHANG Jialiu. Prediction on leakage and rate characteristics of CO2 storage[J]. CIESC Journal, 2012, 63(4): 1226–1233. doi: 10.3969/j.issn.0438-1157.2012.04.033
    [16]
    李晓蓉,刘旭丰,张毅,等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺,2022,44(3):309–320.

    LI Xiaorong, LIU Xufeng, ZHANG Yi, et al. Application and progress of oil and gas well monitoring techniques based on distributed optical fiber sensing[J]. Oil Drilling & Production Technology, 2022, 44(3): 309–320.
    [17]
    周仕明,陆沛青. 井筒密封完整性监测与智能感知技术进展与展望[J]. 石油钻探技术,2024,52(5):35–41.

    ZHOU Shiming, LU Peiqing. Advancements and prospects of monitoring and intelligent perception technology for wellbore sealing integrity[J]. Petroleum Drilling Techniques, 2024, 52(5): 35–41.
    [18]
    张志超. 二氧化碳封存井筒完整性变化机理研究及泄漏风险评价[D]. 大庆:东北石油大学,2018.

    ZHANG Zhichao. Study on mechanism of integrity change and risk assessment of leakage of wellbore during CO2 storage[D]. Daqing: Northeast Petroleum University, 2018.
    [19]
    ROY P, MORRIS J P, WALSH S D C, et al. Effect of thermal stress on wellbore integrity during CO2 injection[J]. International Journal of Greenhouse Gas Control, 2018, 77: 14–26. doi: 10.1016/j.ijggc.2018.07.012
    [20]
    廖加栋. CO2驱注入井筒完整性评价研究[D]. 荆州:长江大学,2020.

    LIAO Jiadong. Study on wellbore integrity evaluation of CO2 flooding injection[D]. Jingzhou: Yangtze University, 2020.
    [21]
    朱良松. 二氧化碳注入过程井筒力学完整性研究[D]. 北京:中国石油大学(北京),2020.

    ZHU Liangsong. Research on wellbore mechanical integrity during carbon dioxide injection[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [22]
    DONG Xuelin, DUAN Zhiyin, GAO Deli. Assessment on the cement integrity of CO2 injection wells through a wellbore flow model and stress analysis[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103097. doi: 10.1016/j.jngse.2019.103097
    [23]
    AURSAND P, HAMMER M, LAVROV A, et al. Well integrity for CO2 injection from ships: simulation of the effect of flow and material parameters on thermal stresses[J]. International Journal of Greenhouse Gas Control, 2017, 62: 130–141. doi: 10.1016/j.ijggc.2017.04.007
    [24]
    WANG Dian, LI Jun, LIAN Wei, et al. CO2 sequestration wells sealing evaluation model: Jimusar Depression, China as an example[J]. Geoenergy Science and Engineering, 2025, 244: 213439. doi: 10.1016/j.geoen.2024.213439
    [25]
    MENG M, FRASH L P, CHEN B, et al. Experimental study of water and CO2 transport along the casing-cement interface[R]. ARMA 2021-1196, 2021.
    [26]
    柏明星,谯志. 二氧化碳地质存储过程中注入井完整性分析[J]. 石油钻采工艺,2012,34(4):85–88. doi: 10.3969/j.issn.1000-7393.2012.04.024

    BAI Mingxing, QIAO Zhi. Well integrity analysis of injection wells during CO2 sequestration[J]. Oil Drilling & Production Technology, 2012, 34(4): 85–88. doi: 10.3969/j.issn.1000-7393.2012.04.024
    [27]
    XIE Xiyang, LAURA E, PIERRE C. CO2-induced creep on Draupne shale and impact on cemented wellbore integrity[R]. ARMA 2021-1399, 2021.
    [28]
    高德利,刘奎,王宴滨,等. 页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展[J]. 石油学报,2022,43(12):1798–1812. doi: 10.7623/syxb202212010

    GAO Deli, LIU Kui, WANG Yanbin, et al. Some research advances in the failure mechanism and design & control technologies of shale gas well integrity[J]. Acta Petrolei Sinica, 2022, 43(12): 1798–1812. doi: 10.7623/syxb202212010
    [29]
    ŠAVIJA B, LUKOVIĆ M. Carbonation of cement paste: Understanding, challenges, and opportunities[J]. Construction and Building Materials, 2016, 117: 285–301. doi: 10.1016/j.conbuildmat.2016.04.138
    [30]
    WANG Dian, LI Jun, LIAN Wei, et al. Evolution of cementing properties of wellbore cement under CO2 geological storage conditions[J]. Construction and Building Materials, 2024, 452: 138927. doi: 10.1016/j.conbuildmat.2024.138927
    [31]
    ZHANG Weicheng, ECKERT A, HILGEDICK S, et al. Wellbore integrity: an integrated experimental and numerical study to investigate pore pressure variation during cement hardening under downhole conditions[J]. SPE Journal, 2022, 27(1): 488–503. doi: 10.2118/208574-PA
    [32]
    辜涛. 二氧化碳地质封存条件下固井水泥石腐蚀损伤与防护研究[D]. 成都:西南石油大学,2017.

    GU Tao. Study on degradation of oilwell cement and anticorrosion technology under CO2 geological storage conditions[D]. Chengdu: Southwest Petroleum University, 2017.
    [33]
    贺凯. CO2地质封存系统完整性演化及其泄漏研究[D]. 大庆:东北石油大学,2019.

    HE Kai. Research on integrity evolution and leakage of CO2 geological storage system[D]. Daqing: Northeast Petroleum University, 2019.
    [34]
    BAI Mingxing, ZHANG Zhichao, FU Xiaofei. A review on well integrity issues for CO2 geological storage and enhanced gas recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 920–926. doi: 10.1016/j.rser.2016.01.043
    [35]
    杨礼明. 高性能混凝土的化学腐蚀、盐结晶和应力腐蚀及其微结构演变规律[D]. 南京:南京航空航天大学,2013.

    YANG Liming. Chemical attack, salt crystallization and stress attack to high performance concrete and the microstructural evolution during corrosion process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [36]
    万伟,陈大钧. 水泥石防CO2、H2S腐蚀性能的室内研究[J]. 钻井液与完井液,2009,26(5):57–59. doi: 10.3969/j.issn.1001-5620.2009.05.019

    WAN Wei, CHEN Dajun. Laboratory studies on the resistance of set cement to corrosion caused by CO2 and H2S[J]. Drilling Fluid & Completion Fluid, 2009, 26(5): 57–59. doi: 10.3969/j.issn.1001-5620.2009.05.019
    [37]
    DAHI TALEGHANI A, LI G, MOAYERI M. Smart expandable cement additive to achieve better wellbore integrity[J]. Journal of Energy Resources Technology, 2017, 139(6): 062903. doi: 10.1115/1.4036963
    [38]
    朱克华,刘云,苏娜,等. 油井二氧化碳腐蚀行为规律及研究进展[J]. 全面腐蚀控制,2013,27(10):23–26. doi: 10.3969/j.issn.1008-7818.2013.10.009

    ZHU Kehua, LIU Yun, SU Na, et al. Behavior pattern and research progress of carbon dioxide corrosion in oil well[J]. Total Corrosion Control, 2013, 27(10): 23–26. doi: 10.3969/j.issn.1008-7818.2013.10.009
    [39]
    霍宏博,刘东东,陶林,等. 基于CO2提高采收率的海上CCUS完整性挑战与对策[J]. 石油钻探技术,2023,51(2):74–80. doi: 10.11911/syztjs.2023009

    HUO Hongbo, LIU Dongdong, TAO Lin, et al. Integrity challenges and countermeasures of the offshore CCUS based on CO2-EOR[J]. Petroleum Drilling Techniques, 2023, 51(2): 74–80. doi: 10.11911/syztjs.2023009
    [40]
    郝锋,李基伟,唐登宇,等. 海上CCS井固井关键技术探讨[J]. 当代石油石化,2023,31(6):33–38. doi: 10.3969/j.issn.1009-6809.2023.06.007

    HAO Feng, LI Jiwei, TANG Dengyu, et al. Discussion on key cementing technology of offshore CCS well[J]. Petroleum & Petrochemical Today, 2023, 31(6): 33–38. doi: 10.3969/j.issn.1009-6809.2023.06.007
    [41]
    吴俊霞,伊伟锴,孙鹏,等. 文23储气库封堵井完整性保障技术[J]. 石油钻探技术,2022,50(5):57–62. doi: 10.11911/syztjs.2022027

    WU Junxia, YI Weikai, SUN Peng, et al. Integrity assurance technologies for plugged wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57–62. doi: 10.11911/syztjs.2022027
    [42]
    马平华. 衰竭油藏二氧化碳驱油关键技术研究[D]. 北京:中国地质大学(北京),2013.

    MA Pinghua. Key technologies study on carbon dioxide flooding in depleted reservoir[D]. Beijing: China University of Geosciences(Beijing), 2013.
    [43]
    杨睿芝. 枯竭气藏CO2注入和埋存中与地层水岩石相互作用研究[D]. 成都:西南石油大学,2016.

    YANG Ruizhi. Study on the interaction of CO2 with formation water and rock during injection and storage in depleted gas reservoirs[D]. Chengdu: Southwest Petroleum University, 2016.
    [44]
    张统得,李前贵,吴金生. 软弱破碎地层孔壁失稳机理及钻井液技术对策研究[C]//中国地质学会探矿工程专业委员会. 第十八届全国探矿工程(岩土钻掘工程)技术学术交流年会论文集. 成都:中国地质科学院探矿工艺研究所,2015:502-506.

    ZHANG Tongde, LI Qiangui, WU Jinsheng. Study on the mechanism of hole wall instability and drilling fluid technology countermeasures in weak fractured formation[C]//Geological Society of China Prospecting Engineering Committee. Proceedings of the 18th National Exploration Engineering (Geotechnical Drilling Engineering) Technical Academic Exchange Conference. Chengdu: Institute of Exploration Technology, Chinese Academy of Geological Sciences, 2015: 502-506.
    [45]
    周银邦,王锐,何应付,等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率,2023,30(2):162–167.

    ZHOU Yinbang, WANG Rui, HE Yingfu, et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162–167.
    [46]
    CLAYTON J L, LEVENTHAL J S, RICE D D, et al. Atmospheric methane flux from coals-preliminary investigation of coal mines and geologic structures in the Black Warrior Basin, Alabama[R]//HOWELL D G. The Future of Energy Gases: Geological Survey Professional Paper 1570. [S. l. ]: United States Geological Survey, 1994: 471-492.
    [47]
    于航,刘强,李彦尊,等. 大规模海上CCS/CCUS集群项目研究与思考[J]. 石油科技论坛,2023,42(2):90–95. doi: 10.3969/j.issn.1002-302x.2023.02.011

    YU Hang, LIU Qiang, LI Yanzun, et al. Research and thinking of large-scale offshore CCS/CCUS cluster projects[J]. Petroleum Science and Technology Forum, 2023, 42(2): 90–95. doi: 10.3969/j.issn.1002-302x.2023.02.011
    [48]
    李琦,李彦尊,许晓艺,等. 海上CO2地质封存监测现状及建议[J]. 高校地质学报,2023,29(1):1–12.

    LI Qi, LI Yanzun, XU Xiaoyi, et al. Current status and recommendations of offshore CO2 geological storage monitoring[J]. Geological Journal of China Universities, 2023, 29(1): 1–12.
    [49]
    ZHANG Weicheng, LIAO Wenyu, ECKERT A, et al. Wellbore integrity evaluation for CO2 sequestration wells: an integrated experimental, geochemical, and numerical investigation[R]. ARMA 2022-0816, 2022.
    [50]
    郝宁,刘琦,包琦,等. 纳米改性固井水泥在CO2地质封存中的应用现状及进展[J]. 应用化工,2023,52(9):2621–2626. doi: 10.3969/j.issn.1671-3206.2023.09.027

    HAO Ning, LIU Qi, BAO Qi, et al. Application status and progress of nano-modified oil well cement in CO2 geological storage[J]. Applied Chemical Industry, 2023, 52(9): 2621–2626. doi: 10.3969/j.issn.1671-3206.2023.09.027
    [51]
    赵莉,刘琦,马忠诚,等. 用于CO2地质封存的pH响应型智能凝胶封窜剂研究进展[J]. 油田化学,2020,37(2):374–380.

    ZHAO Li, LIU Qi, MA Zhongcheng, et al. Progress on pH responsive smart gels as sealants for CO2 geologic storage[J]. Oilfield Chemistry, 2020, 37(2): 374–380.
    [52]
    刘建新,田启忠,张瑞霞,等. 耐CO2腐蚀油井管材的选用[J]. 腐蚀科学与防护技术,2012,24(1):77–78.

    LIU Jianxin, TIAN Qizhong, ZHANG Ruixia, et al. Selection of CO2 corrosion-resistant oil well pipe[J]. Corrosion Science and Protection Technology, 2012, 24(1): 77–78.
    [53]
    殷宏. CO2驱油集输系统管线腐蚀特性及选材技术研究[J]. 油气田地面工程,2021,40(12):65–69. doi: 10.3969/j.issn.1006-6896.2021.12.013

    YIN Hong. Study on corrosion characteristics and material selection technology of pipeline in CO2 flooding gathering and transportation system[J]. Oil-Gas Field Surface Engineering, 2021, 40(12): 65–69. doi: 10.3969/j.issn.1006-6896.2021.12.013
    [54]
    刘向斌,黄伟明,马文海,等. 水驱老井转CCUS注入井风险评价方法[J]. 石油钻采工艺,2022,44(6):752–757.

    LIU Xiangbin, HUANG Weiming, MA Wenhai, et al. Risk evaluation method for converting previous water injection wells to CCUS injection wells[J]. Oil Drilling & Production Technology, 2022, 44(6): 752–757.
    [55]
    ZULQARNAIN M, ZEIDOUNI M, HUGHES R G. Risk based approach to identify the leakage potential of wells in depleted oil and gas fields for CO2 geological sequestration[R]. CMTC 486032, 2017.
    [56]
    王晓桥,马登龙,夏锋社,等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程,2020,27(2):23–34.

    WANG Xiaoqiao, MA Denglong, XIA Fengshe, et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering, 2020, 27(2): 23–34.
    [57]
    刘文武,李超,刘家荣,等. 二氧化碳地质封存钻探关键技术研究[J]. 矿产勘查,2023,14(4):625–630.

    LIU Wenwu, LI Chao, LIU Jiarong, et al. Research on key drilling technology of carbon dioxide geological storage[J]. Mineral Exploration, 2023, 14(4): 625–630.
    [58]
    ZHANG Zhen, HE Xupeng, LI Yiteng, et al. Locating CO2 leakage in subsurface traps using Bayesian inversion and deep learning[R]. SPE 213522, 2023.
    [59]
    YANG Baolin, SHAO Chun, HU Xinling, et al. Advances in carbon dioxide storage projects: assessment and perspectives[J]. Energy & Fuels, 2023, 37(3): 1757–1776.
  • Related Articles

    [1]YIN Qishuai, ZHAI Yuqi, YAN Xinye, ZHANG Xun, JIA Shu, YANG Jin. Design and Optimization of Land-Based Test Scheme for Leakage Emergency Disposal Equipment of Deep-Sea Underwater Production Systems[J]. Petroleum Drilling Techniques, 2025, 53(3): 67-76. DOI: 10.11911/syztjs.2025069
    [2]JIN Taiyu. Study on Three-Dimensional Fluid-Solid Coupling Model of Drilling Fluid Leakage in Rough Fracture Network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69-77. DOI: 10.11911/syztjs.2023100
    [3]ZHU Mingming, SUN Huan, SUN Yan, CONG Cheng, SHI Deyi, JIA Jiguo. Loss Circulation Control Technology for Malignant Water Leakage Layer in Longdong Tight Oil Region[J]. Petroleum Drilling Techniques, 2023, 51(6): 50-56. DOI: 10.11911/syztjs.2023003
    [4]HUO Hongbo, LIU Dongdong, TAO Lin, WANG Deying, SONG Chuang, HE Shiming. Integrity Challenges and Countermeasures of the Offshore CCUS Based on CO2-EOR[J]. Petroleum Drilling Techniques, 2023, 51(2): 74-80. DOI: 10.11911/syztjs.2023009
    [5]WU Junxia, YI Weikai, SUN Peng, LIU Huanle. Integrity Assurance Technologies for Plugged Wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57-62. DOI: 10.11911/syztjs.2022027
    [6]WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, LI Mingjun, WANG Peng. Foamed Cement Slurry Cementing Technology for Low-Pressure and Leakage-ProneLayers of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 25-30. DOI: 10.11911/syztjs.2022075
    [7]KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
    [8]ZHANG Bo, LUO Fangwei, SUN Bingcai, XIE Junfeng, XU Zhixiong, LIAO Hualin. A Method for Wellbore Integrity Detection in Deep Oil and Gas Wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114-120. DOI: 10.11911/syztjs.2021127
    [9]ZHANG Yu. Application of Direct-Push Storage Logging Technology in the Northwest Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018
    [10]WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080
  • Cited by

    Periodical cited type(25)

    1. 肖阳,马中慧,刘书云,韩晨辉,夏瀚涛,张进源. 珠江口盆地潜山储层地质力学及压裂参数优化研究. 科学技术与工程. 2024(04): 1392-1401 .
    2. 郭鹏,李晓,李守定,郑博,毛天桥. 真三轴应力状态下海相与陆相页岩射孔压裂裂缝扩展规律对比研究. 工程地质学报. 2024(04): 1273-1280 .
    3. 刘星,邱建,陈作,张旭东,李双明,齐自立. 基于八叉树网格的页岩压裂复杂缝网面积计算方法. 石油钻探技术. 2024(06): 117-125 . 本站查看
    4. 陈珂,于志豪,王守毅,任岚,宋雯静,林然. 断层附近非均匀应力场页岩压裂缝网扩展模拟. 断块油气田. 2023(02): 213-221 .
    5. 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 . 本站查看
    6. Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 .
    7. 沈骋,范宇,曾波,郭兴午. 渝西区块页岩气储层改造优化对策与适应性分析. 油气地质与采收率. 2022(02): 131-139 .
    8. 蒋佩,曾凌翔,朱炬辉,张俊成. 湖北深层页岩气水平井储层改造关键技术. 油气井测试. 2022(02): 31-35 .
    9. 马阔,王雷,许文俊,赵彦昕,袁勇,陈曦宇,张烨. 湖相页岩水力压裂裂缝穿层扩展规律物理模拟. 中国科技论文. 2022(05): 539-545 .
    10. 刘雨舟,张志坚,王磊,何国鸿. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用. 石油与天然气化工. 2022(03): 76-81+90 .
    11. 马建民,马可欣,张富美,李小娜,杜玉昆,赵博,赵玉明. 超临界CO_2压裂起裂压力预测方法. 断块油气田. 2022(03): 295-301 .
    12. 赵志红,金浩增,郭建春,陈孟婷,卢聪. 水化作用下深层页岩软化本构模型研究. 岩石力学与工程学报. 2022(S2): 3189-3197 .
    13. 何颂根,冉旭,于丹,王峻峰,邹枫. 页岩多重孔隙水相自吸能力评价. 断块油气田. 2022(05): 598-603 .
    14. 宋毅,林然,黄浩勇,任岚,岳文翰,孙映. 深层页岩气水平井压裂异步起裂裂缝延伸模拟与调控. 大庆石油地质与开发. 2022(05): 145-152 .
    15. 徐栋,王玉斌,白坤森,朱卫平,刘川庆,李兵,何朋勃. 煤系非常规天然气一体化压裂液体系研究与应用. 煤田地质与勘探. 2022(10): 35-43 .
    16. 蒋海,肖阳,王栋,刘子平,王家豪,赵地,邹龙庆. 页岩气体积改造人工缝网优化设计. 特种油气藏. 2022(05): 154-160 .
    17. 夏阳,韦世明,金衍,陈康平. 适用于深层页岩气井生产模拟和预测的自扩散流热耦合模型. 天然气工业. 2021(02): 111-118 .
    18. 邢德钢,崔连可,王树森,蒋尔梁,余小燕,杨琪. 泌阳凹陷陆相页岩复杂裂缝起裂及扩展研究. 石油地质与工程. 2021(02): 93-97 .
    19. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 .
    20. 刘威. 大牛地气田薄储层控缝高压裂工艺技术. 断块油气田. 2021(02): 284-288 .
    21. 顾浩,尚根华,李慧莉,王强,朱莲花,赵锐,康志江,李王鹏. 基于井温的超深断溶体油藏油井动用深度计算. 特种油气藏. 2021(02): 57-62 .
    22. 赵金洲,任岚,蒋廷学,胡东风,吴雷泽,吴建发,尹丛彬,李勇明,胡永全,林然,李小刚,彭瑀,沈骋,陈曦宇,尹庆,贾长贵,宋毅,王海涛,李远照,吴建军,曾斌,杜林麟. 中国页岩气压裂十年:回顾与展望. 天然气工业. 2021(08): 121-142 .
    23. 熊健,刘峻杰,吴俊,刘向君,王振林,梁利喜,张磊. 致密储层压裂缝扩展规律与可压裂性评价. 天然气地球科学. 2021(10): 1581-1591 .
    24. 陶祖文,李钦,徐力群,徐单峰. 四川盆地永川区块五峰组—龙马溪组深层页岩可压性评价. 天然气技术与经济. 2020(05): 7-12+27 .
    25. 石林,张鲲鹏,慕立俊. 页岩油储层压裂改造技术问题的讨论. 石油科学通报. 2020(04): 496-511 .

    Other cited types(20)

Catalog

    Article Metrics

    Article views (265) PDF downloads (122) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return