CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111
Citation: CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, CHEN Ye, ZHENG Kaibo. The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling[J]. Petroleum Drilling Techniques, 2020, 48(1): 54-60. DOI: 10.11911/syztjs.2019111

The Optimization of Rubber Sealing Materials for Key Equipment in Polar Drilling

More Information
  • Received Date: April 21, 2019
  • Revised Date: October 08, 2019
  • Available Online: November 17, 2019
  • The unique low temperature environment of polar drilling hardens rubber gradually to the point of even vitrifying it so it loses its original elasticity. This can easily cause the sealing failure of key drilling equipment, such as mud pump and BOP, which affects normal production and brings about potential safety risks. Therefore, it is necessary to optimize the rubber sealing materials used in the key equipment for polar drilling. According to the National Standards GB/T 528—2009 and GB/T 7759.2—2014, the rubber materials were subjected to uniaxial tension and compression permanent deformation tests at the temperature of 20~–50 °C, and the test data and the hyper-elastic constitutive models of several common rubbers were fitted to obtain the model parameters, so as to analyze the applicability of these constitutive models under low temperature conditions. The sealing performance of rubber O-ring at –45 °C was simulated and analyzed by using ABAQUS finite element software, and found the location of the seal failure which is easy to occur at low temperature. According to the analysis, Polynomial (N=2) model and Ogden (N=3) model can accurately describe the mechanical properties of rubber under low temperature and small deformation conditions. Silicone rubber, gas rubber and nitrile rubber can still maintain superior sealing performance under polar environments (–45 °C), so they can be used as the rubber sealing materials for key equipment of polar drilling. The analysis of rubber super-elastic constitutive model at low temperature and the optimization of rubber sealing materials can provide theoretical guidance and support for the future polar drilling of China.

  • [1]
    USGS. Circum-Arctic resource appraisal: estimates of undiscovered oil and gas north of the Arctic Circle[R]. USGS Fact Sheet 2008-3049, 2008.
    [2]
    钟琳曼. “一带一路”背景下中俄油气合作机遇分析[J]. 江汉石油职工大学学报, 2017, 30(4): 86–89. doi: 10.3969/j.issn.1009-301X.2017.04.027

    ZHONG Linman. Opportunities for Sino-Russia oil & gas cooperation at the background of the Belt and Road Initiative[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2017, 30(4): 86–89. doi: 10.3969/j.issn.1009-301X.2017.04.027
    [3]
    杨进, 路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术, 2017, 45(5): 1–7.

    YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
    [4]
    张文博. 阀门密封材料低温特性实验研究[D]. 成都: 西南石油大学, 2012.

    ZHANG Wenbo. Experimental study on low temperature characteristics of valve sealing materials[D]. Chengdu: Southwest Petroleum University, 2012.
    [5]
    张卫军, 杨向前, 刘洪亮, 等. 钻井泵阀盖金属密封失效原因与维修方法[J]. 石油矿场机械, 2008, 37(4): 86–87. doi: 10.3969/j.issn.1001-3482.2008.04.024

    ZHANG Weijun, YANG Xiangqian, LIU Hongliang, et al. Failure cause of valve covers metal sealing of the drilling pump and its maintenance[J]. Oil Field Equipment, 2008, 37(4): 86–87. doi: 10.3969/j.issn.1001-3482.2008.04.024
    [6]
    PUCCI E, SACCOMANDI G. A note on the agent model for rubber-like materials[J]. Rubber Chemistry and Technology, 2002, 75(5): 839–852. doi: 10.5254/1.3547687
    [7]
    严永明. 低温环境下橡胶材料超弹性本构模型探究[D]. 秦皇岛: 燕山大学, 2016.

    YAN Yongming. Study on hyperelastic constitutive modle of rubber materials under low temperture environment[D]. Qinhuangdao: Yanshan University, 2016.
    [8]
    OGDEN R W. Nearly isotropic elastic deformations: application to rubberlike solids[J]. Journal of the Mechanics and Physics of Solids, 1978, 26(1): 37–57. doi: 10.1016/0022-5096(78)90012-1
    [9]
    王国权, 刘萌, 姚艳春, 等. 不同本构模型对橡胶制品有限元法适应性研究[J]. 力学与实践, 2013, 35(4): 40–47. doi: 10.6052/1000-0879-13-030

    WANG Guoquan, LIU Meng, YAO Yanchun, et al. Application of different constitutive models in the nonlinear finite element method for rubber parts[J]. Mechanics in Engineering, 2013, 35(4): 40–47. doi: 10.6052/1000-0879-13-030
    [10]
    朱艳峰, 刘锋, 黄小清, 等. 橡胶材料的本构模型[J]. 橡胶工业, 2006, 53(2): 119–125. doi: 10.3969/j.issn.1000-890X.2006.02.014

    ZHU Yanfeng, LIU Feng, HUANG Xiaoqing, et al. Constitutive model of rubber material[J]. Rubber industry, 2006, 53(2): 119–125. doi: 10.3969/j.issn.1000-890X.2006.02.014
    [11]
    于海富, 李凡珠, 杨海波, 等. 橡胶材料非线性高弹-粘弹性本构模型[J]. 橡胶工业, 2017, 64(12): 719–723. doi: 10.3969/j.issn.1000-890X.2017.12.003

    YU Haifu, LI Fanzhu, YANG Haibo, et al. An nonlinear visco-hyperelastic constitutive model for carbon black filled natural rubber materials[J]. Rubber Industry, 2017, 64(12): 719–723. doi: 10.3969/j.issn.1000-890X.2017.12.003
    [12]
    钟亮, 赵俊利, 范社卫. 基于ABAQUS的O形密封圈密封性能仿真研究[J]. 煤矿机械, 2014, 35(3): 52–54.

    ZHONG Liang, ZHAO Junli, FAN Shewei. Simulation study on O-sealing sealing performance based on ABAQUS software[J]. Coal Mine Machinery, 2014, 35(3): 52–54.
    [13]
    谭晶, 杨卫民, 丁玉梅, 等. O形橡胶密封圈密封性能的有限元分析[J]. 润滑与密封, 2006, 31(9): 65–69. doi: 10.3969/j.issn.0254-0150.2006.09.020

    TAN Jing, YANG Weimin, DING Yumei, et al. Finite element analysis of the sealing performance of O-ring seal structure[J]. Lubrication Engineering, 2006, 31(9): 65–69. doi: 10.3969/j.issn.0254-0150.2006.09.020
    [14]
    温纪宏, 陈国明, 畅元江, 等. 隔水管接头O形密封圈密封性能分析[J]. 石油机械, 2013, 41(1): 45–48. doi: 10.3969/j.issn.1001-4578.2013.01.012

    WEN Jihong, CHEN Guoming, CHANG Yuanjiang, et al. Sealability analysis of the riser joint O-ring[J]. China Petroleum Machinery, 2013, 41(1): 45–48. doi: 10.3969/j.issn.1001-4578.2013.01.012
  • Cited by

    Periodical cited type(10)

    1. 何旭晟,杨若愚,赵洋,董全,吴坷,潘孝青. 完整作业信息辅助中江-蓬莱气区筇竹寺组地层漏失治理. 当代化工研究. 2025(01): 121-123 .
    2. 臧晓宇,邱正松,郭鹏飞,钟汉毅,赵欣. 微胶囊型堵漏剂的制备及裂缝封堵层强化效果研究. 应用化工. 2025(02): 277-281 .
    3. 吴晓红,李云峰,余小龙,陈金霞,周岩,梁利喜,丁乙. 南堡沙河街组硬脆性泥页岩地层漏失压力预测方法. 科学技术与工程. 2024(01): 189-194 .
    4. 金泰宇. 三维粗糙裂缝网络钻井液漏失流固耦合模型研究. 石油钻探技术. 2024(01): 69-77 . 本站查看
    5. 侯冠中,许杰,谢涛,何瑞兵,牛新鹏,黄维安. 渤中19-6潜山裂缝储层高承压可解堵防漏堵漏体系优化与应用. 中国海上油气. 2024(02): 149-158 .
    6. 何旭晟,周井红,管桐,代红,魏攀峰,潘孝青. 地质工程原生数据预测深层小尺度裂缝性地层漏失特征. 石油钻采工艺. 2024(01): 33-44 .
    7. 胡登平,李银生,黄欣悦,叶志强,贺波. 低孔低渗砂岩储层废弃钻井液环境污染土壤深度研究. 环境科学与管理. 2024(08): 50-53 .
    8. 贾永红,周双君,曹青天,黄旭东,温杰,吴伟祺. 油基钻井液高滤失复合堵漏剂的研制及性能评价. 石油化工应用. 2024(08): 92-96 .
    9. 张文斌,张明友,贺秋云,黄靖富,谢奎,魏国安. 缝洞型碳酸盐岩气藏试气投产一体化技术. 石油钻采工艺. 2023(04): 478-484 .
    10. 罗鸣,高德利,黄洪林,李军,杨宏伟,张更,刘楷. 钻井液对页岩力学特性及井壁稳定性的影响. 石油钻采工艺. 2022(06): 693-700 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return