TONG Shaokai, GAO Deli. Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory[J]. Petroleum Drilling Techniques, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013
Citation: TONG Shaokai, GAO Deli. Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory[J]. Petroleum Drilling Techniques, 2018, 46(1): 90-96. DOI: 10.11911/syztjs.2018013

Hydraulic Jet Fracturing Technology Based on Archimedes Spiral Theory

More Information
  • Received Date: July 27, 2017
  • Revised Date: January 06, 2018
  • The multi-stage double-cluster hydraulic jet often encounters problems such as that of relative ineffectiveness,uneven erosion between the upstream and downstream by the injector,and sanding problems caused by the easy settlement of sands.To overcome these challenges,the theory of Archimedes double helix was utilized and integrated to a mathematical model of hydro jet fracturing,which provides the basis in the design of the double-helix hydraulic fracturing tubing string and injector.Then visualizations of the sand-carrying evaluation experiments were performed to evaluate the double-helix characteristics.In addition,kinetic equations of sand migration in sand-carrying fluid through straight pipes and double-helix pipes with the same diameter under hydraulic fracturing conditions were obtained based on Newton’s second law,then transformed into the calculation models of the kinetic velocity of sands.As indicated in the research,the double-helix hydraulic fracturing pipe strings and injector can generate rotational flow,which help to balance double-helix hydraulic fracturing effects,and reduce erosion unevenness between the upstream and the downstream.The movement of sands can be described in a model by the accelerated movement equation with a constant accelerated velocity and varied accelerated velocity inside straight pipes and double-helix pipes,respectively.The research demonstrated that the double-helix hydraulic fracturing pipe strings and injector can function well,which are feasible evidently in balancing the multi-stage hydraulic fracturing effects and improving sand-carrying capacity of fluid along horizontal wellbores.
  • [1]
    HALS K M D,BERRE I.Interaction between injection points during hydraulic fracturing[J].Water Resources Research,2012,48(11):484-494.
    [2]
    田守嶒,李根生,黄中伟,等.水力喷射压裂机理与技术研究进展[J].石油钻采工艺,2008,30(1):58-62. TIAN Shouceng,LI Gensheng,HUANG Zhongwei,et al.Research on hydraulijet fracturing mechanisms and technologies[J].Oil Drilling Production Technology,2008,30(1):58-62.
    [3]
    牛继磊,李根生,宋剑,等.水力喷砂射孔参数实验研究[J].石油钻探技术,2003,31(2):14-16. NIU Jilei,LI Gensheng,SONG Jian,et al.An experimental study on abrasive water jet perforation parameters[J].Petroleum Drilling Techniques,2003,31(2):14-16.
    [4]
    成一,袁飞,王艳芬,等.水平井水力喷射压裂关键参数优化研究[J].石油地质与工程,2013,27(5):115-117. CHENG Yi,YUAN Fei,WANG Yanfen,et al.Research on key parameters of hydraulic jet fracturing in horizontal well[J].Petroleum Geology and Engineering,2013,27(5):115-117.
    [5]
    李根生,牛继磊,刘泽凯,等.水力喷砂射孔机理实验研究[J].石油大学学报(自然科学版),2002,26(2):31-34. LI Gensheng,NIU Jilei,LIU Zekai,et al.Experimental study on mechanisms of hydraulic sand blasting perforation for improvement of oil production[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(2):31-34.
    [6]
    RUBINSTEIN J L,MAHANI A B.Myths and facts on wastewater injection,hydraulic fracturing,enhanced oil recovery,and induced seismicity[J].Seismological Research Letters,2015,86(4):1060-1067.
    [7]
    范薇,胥云,王振铎,等.井下水力喷砂压裂工具典型结构及应用[J].石油钻探技术,2009,37(6):74-77. FAN Wei,XU Yun,WANG Zhenduo,et al.Typical structure and application of downhole sand jet fracturing tools[J].Petroleum Drilling Techniques,2009,37(6):74-77.
    [8]
    EAST L E,GRIESER W,MCDANIEL B W,et al.Successful application of hydrajet fracturing on horizontal wells completed in a thick shale reservoir[R].SPE 91435,2004.
    [9]
    王步娥,舒晓晖,尚旭兰,等.水力喷射射孔技术研究与应用[J].石油钻探技术,2005,33(3):51-54. WANG Bu’e,SHU Xiaohui,SHANG Xulan,et al.The study and application of the water-jet perforation technique[J].Petroleum Drilling Techniques,2005,33(3):51-54.
    [10]
    田守嶒,陈立强,盛茂,等.水力喷射分段压裂裂缝起裂模型研究[J].石油钻探技术,2015,43(5):31-36. TIAN Shouceng,CHEN Liqiang,SHENG Mao,et al.Modeling of fracture initiation for staged hydraulic jetting fracturing[J].Petroleum Drilling Techniques,2015,43(5):31-36.
    [11]
    曲海,李根生,刘营.拖动式水力喷射分段压裂工艺在筛管水平井完井中的应用[J].石油钻探技术,2012,40(3):83-86. QU Hai,LI Gensheng,LIU Ying.The application of dragged multistage hydrojet-fracturing in horizontal well with screen pipe completion[J].Petroleum Drilling Techniques,2012,40(3):83-86.
    [12]
    张然,李根生,杨林,等.页岩气增产技术现状及前景展望[J].石油机械,2011,39(增刊1):117-120. ZHAN Ran,LI Gensheng,YANG Lin,et al.Current situation and prospect of shale gas production increasing technology[J].China Petroleum Machinery,2011,39(supplement 1):117-120.
    [13]
    徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1979:100-103. XU Zhilun.Elasticity (Ⅰ)[M].Beijing:The People’s Education Press,1979:100-103.
    [14]
    刘鸿文.材料力学(Ⅱ)[M].2版.北京:高等教育出版社,2004:147-158. LIU Hongwen.Mechanics of materials (Ⅱ)[M].2nd ed.Beijing:Higher Education Press,2004:147-158.
    [15]
    BOKANE A,JAIN S,DESHPANDE Y,et al.Computational fluid dynamics (CFD) study and investigation of proppant transport and distribution in multistage fractured horizontal wells[R].SPE 165952,2013.
    [16]
    ZHANG Yongli,MCLAURY B S,SHIRAZI S A.Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code[J].Journal of Fluids Engineering,2009,131(3):1-9.
    [17]
    DANESHY A A.Uneven distribution of proppants in perf clusters[J].World Oil,2011,232(4):75-76.
  • Related Articles

    [1]ZHOU Shiming, LU Peiqing. Advancements and Prospects of Monitoring and Intelligent PerceptionTechnology for Wellbore Sealing Integrity[J]. Petroleum Drilling Techniques, 2024, 52(5): 35-41. DOI: 10.11911/syztjs.2024097
    [2]FU Chao, YANG Jin, LIU Huaqing, YIN Qishuai, WANG Lei, HU Zhiqiang. Multi-Dimensional Selection Method for Well Construction in Shallow Formations of Deepwater[J]. Petroleum Drilling Techniques, 2024, 52(3): 40-46. DOI: 10.11911/syztjs.2024051
    [3]SUN Weifeng, LIU Kai, ZHANG Dezhi, LI Weihua, XU Liming, DAI Yongshou. A Kick and Lost Circulation Monitoring Method Combining Bi-GRU and Drilling Conditions[J]. Petroleum Drilling Techniques, 2023, 51(3): 37-44. DOI: 10.11911/syztjs.2023043
    [4]SHU Huilong, TIAN Zhonglan, FU Li, YANG Henglin, YANG Lei, FAN Yuguang. A Quantitative Monitoring and Evaluation Technology for Hole Cleaning of Horizontal Well[J]. Petroleum Drilling Techniques, 2023, 51(2): 68-73. DOI: 10.11911/syztjs.2022083
    [5]XIA Wenhe, PAN Shuo, MENG Yingfeng, LI Yongjie. The Returned Cuttings Monitoring Method for Gas Drilling Based on Audio Signals[J]. Petroleum Drilling Techniques, 2017, 45(3): 121-126. DOI: 10.11911/syztjs.201703021
    [6]LIU Xuli. The Application of Downhole Microseismic Monitoring Technology in Shale Gas “Well Factory” Hydraulic Fracturing[J]. Petroleum Drilling Techniques, 2016, 44(4): 102-107. DOI: 10.11911/syztjs.201604018
    [7]Zhou Jian, Zhang Baoping, Li Kezhi, Zhang Xudong, Xu Shengqiang. Fracture Monitoring Technology Based on Surface Tiltmeter in "Well Factory" Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(3): 71-75. DOI: 10.11911/syztjs.201503014
    [8]Sui Xiuxiang, Liang Yufeng, Li Yiming, Yin Bangtang, Li Xiangfang. Early Monitoring of the Gas-Cut in Deepwater Riser Based on Doppler Measuring System[J]. Petroleum Drilling Techniques, 2014, 42(5): 90-94. DOI: 10.11911/syztjs.201405016
    [9]Chu Daoyu. Well Control Technology in Deepwater Well[J]. Petroleum Drilling Techniques, 2012, 40(1): 52-57. DOI: 10.3969/j.issn.1001-0890.2012.01.011
    [10]Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002
  • Cited by

    Periodical cited type(8)

    1. 孙巧雷,刘语维,夏乐,冯定,王鹏,张红. 波流载荷作用下的下入安装立管横向动态特性. 石油机械. 2023(06): 50-56+65 .
    2. 焦金刚,谢仁军,吴怡. 深水水下井口下沉时送入管柱纵向振动分析. 石油机械. 2021(12): 62-69 .
    3. 高德利,王宴滨. 海洋深水钻井力学与控制技术若干研究进展. 石油学报. 2019(S2): 102-115 .
    4. 管志川,李敬皎,韩超,张波,赵效锋,腾学清,孙宝江. 深水钻井送入管柱的载荷计算与强度分析. 中国石油大学学报(自然科学版). 2018(02): 71-78 .
    5. 刘康,朱敬宇,张慎颜,陈国明,张伟国. 深水送入管柱导向系统力学性能及影响因素分析. 中国海上油气. 2018(03): 137-143 .
    6. 阚长宾,杨进,周建良,刘书杰,张思敏,胡南丁,殷启帅. 深水低压井口下入工具结构设计与承载特性分析. 石油科学通报. 2017(02): 279-287 .
    7. 柯珂,张辉,周宇阳,王磊,冯士伦. 深水钻井喷射下导管模拟试验装置的研制. 石油钻探技术. 2015(02): 33-37 . 本站查看
    8. 陈江烨,王一良,侯庆春,杨松. 油井声控压差平衡式开关控制器的研制与试验. 石油钻探技术. 2015(04): 133-137 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (4796) PDF downloads (3838) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return