SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions [J]. Petroleum Drilling Techniques,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043
Citation: SUN Weifeng, LIU Kai, ZHANG Dezhi, et al. A kick and lost circulation monitoring method combining Bi-GRU and drilling conditions [J]. Petroleum Drilling Techniques,2023, 51(3):37-44. DOI: 10.11911/syztjs.2023043

A Kick and Lost Circulation Monitoring Method Combining Bi-GRU and Drilling Conditions

More Information
  • Received Date: September 15, 2022
  • Revised Date: March 16, 2023
  • Available Online: March 27, 2023
  • The existing kick and lost circulation monitoring methods using pot volume and outlet flow of drilling fluids do not consider the influence of the pump on and off on the outlet flow, and pot volume of drilling fluids. So it can easily lead to false alarm. In order to address this problem, the correlation of drilling conditions with pot volume and outlet flow of drilling fluids was established, and an intelligent kick and lost circulation monitoring method combining a bidirectional-gated recurrent unit (Bi-GRU) and drilling conditions was proposed. The proposed model and other representative models for kick and lost circulation monitoring were tested by using the data collected from 23 wells. The experimental results show that the identification accuracy of the proposed model achieves 94.25%, which is superior to those of the other models. Compared with that of the Bi-GRU model without considering the drilling conditions, the false alarm rate of the proposed model drops from 12.52% to 1.12%. The proposed method reduces the false alarms caused by pump on and off states during kick and lost circulation monitoring, and these findings can provide technical support for safe drilling.

  • [1]
    张晓诚,霍宏博,林家昱,等. 渤海油田裂缝性油藏地质工程一体化井漏预警技术[J]. 石油钻探技术,2022,50(6):72–77.

    ZHANG Xiaocheng, HUO Hongbo, LIN Jiayu, et al. Integrated geology-engineering early warning technologies for lost circulation of fractured reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(6): 72–77.
    [2]
    MAO Youli, ZHANG Peng. An automated kick alarm system based on statistical analysis of real-time drilling data[R]. SPE 197275, 2019.
    [3]
    孙伟峰,李威桦,王健,等. 基于C#与Python混合编程的钻井溢漏风险智能识别平台[J]. 实验技术与管理,2021,38(11):166–172.

    SUN Weifeng, LI Weihua, WANG Jian, et al. Intelligent identification platform of drilling kick and loss risk based on mixed programming of C# and Python[J]. Experimental Technology and Management, 2021, 38(11): 166–172.
    [4]
    戴永寿,岳炜杰,孙伟峰,等. “三高” 油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版),2015,39(3):188–194.

    DAI Yongshou, YUE Weijie, SUN Weifeng, et al. Online monitoring and warning system for early kick foreboding on ‘three high’ wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 188–194.
    [5]
    YI M, ASHOK P, RAMOS D, et al. Natural language processing applied to reduction of false and missed alarms in kick and lost circulation detection[R]. SPE 206340, 2021.
    [6]
    杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13.

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.
    [7]
    袁俊亮,范白涛,幸雪松,等. 基于朴素贝叶斯算法的钻井溢流实时预警研究[J]. 石油钻采工艺,2021,43(4):455–460.

    YUAN Junliang, FAN Baitao, XING Xuesong, et al. Real-time early warning of drilling overflow based on naive Bayes algorithm[J]. Oil Drilling & Production Technology, 2021, 43(4): 455–460.
    [8]
    邓正强,兰太华,林阳升,等. 川渝地区防漏堵漏智能辅助决策平台研究与应用[J]. 石油钻采工艺,2021,43(4):461–466.

    DENG Zhengqiang, LAN Taihua, LIN Yangsheng, et al. Research and application of intelligent assistant decision making platform of lost circulation prevention and control in Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2021, 43(4): 461–466.
    [9]
    李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8.

    LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8.
    [10]
    王茜,张菲菲,李紫璇,等. 基于钻井模型与人工智能相耦合的实时智能钻井监测技术[J]. 石油钻采工艺,2020,42(1):6–15.

    WANG Xi, ZHANG Feifei, LI Zixuan, et al. Real-time intelligent drilling monitoring technique based on the coupling of drilling model and artificial intelligence[J]. Oil Drilling & Production Technology, 2020, 42(1): 6–15.
    [11]
    SEABE P L, MOUTSINGA C R B, PINDZA E. Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: A deep learning approach[J]. Fractal and Fractional, 2023, 7(2): 203. doi: 10.3390/fractalfract7020203
    [12]
    刘汉桥. 基于数据挖掘的海洋钻井井涌早期预测方法研究[D]. 青岛: 中国石油大学(华东), 2020.

    LIU Hanqiao. Study on early prediction for offshore drilling well kick based on data mining[D]. Qingdao: China University of Petroleum(East China), 2020.
    [13]
    SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673–2681. doi: 10.1109/78.650093
    [14]
    WANG Yanting, ZHENG Dingkun, JIA Rong. Fault diagnosis method for MMC-HVDC based on Bi-GRU neural network[J]. Energies, 2022, 15(3): 994. doi: 10.3390/en15030994
    [15]
    KIM J. Finding the best performing pre-trained CNN model for image classification: Using a class activation map to spot abnormal parts in diabetic retinopathy image[J]. American Journal of Biomedical and Life Sciences, 2021, 9(4): 176–181. doi: 10.11648/j.ajbls.20210904.11
    [16]
    NIE Qi, LI Yun, XIONG Wenying, et al. Health recognition algorithm for sports training based on Bi-GRU neural networks[J]. Journal of Healthcare Engineering, 2021, 2021: 1579746.
    [17]
    LIU Xun, YOU Junling, WU Yulei, et al. Attention-based bidirectional GRU networks for efficient HTTPS traffic classification[J]. Information Sciences, 2020, 541: 297–315. doi: 10.1016/j.ins.2020.05.035
    [18]
    MATEUS B C, MENDES M, FARINHA J T, et al. Comparing LSTM and GRU models to predict the condition of a pulp paper press[J]. Energies, 2021, 14(21): 6958. doi: 10.3390/en14216958
    [19]
    WANG Guangbin, CHEN Jinhua, ZHONG Zhixian, et al. Multi-source heterogeneous fusion entropy ratio distance feature of bearing performance degradation based on DTW[J]. Vibroengineering Procedia, 2021, 39: 17–23. doi: 10.21595/vp.2021.22269
    [20]
    TANG Hewei, ZHANG Shang, ZHANG Feifei, et al. Time series data analysis for automatic flow influx detection during drilling[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1103–1111. doi: 10.1016/j.petrol.2018.09.018
    [21]
    刘翔,张立华,戴泽源,等. 一种无输入参数的强噪声背景下ICESat-2点云去噪方法[J]. 光子学报,2022,51(11):354–364.

    LIU Xiang, ZHANG Lihua, DAI Zeyuan, et al. A parameter-free denoising method for ICESat-2 point cloud under strong noise[J]. Acta Photonica Sinica, 2022, 51(11): 354–364.
  • Cited by

    Periodical cited type(7)

    1. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 .
    2. 马成云,窦益华,邓金根,冯永存,艾二鑫,赵凯,惠城. 动态裂缝堵漏试验装置的研制与应用. 石油机械. 2023(12): 25-30 .
    3. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 .
    4. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
    5. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    6. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
    7. 范胜,宋碧涛,陈曾伟,李大奇,刘金华,成增寿. 顺北5-8井志留系破裂性地层提高承压能力技术. 钻井液与完井液. 2019(04): 431-436 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return