富满油田长封固段低摩阻超低密度水泥浆固井技术

杨昆鹏, 李鹏晓, 敖康伟, 张天意, 夏元博, 侯薇

杨昆鹏,李鹏晓,敖康伟,等. 富满油田长封固段低摩阻超低密度水泥浆固井技术[J]. 石油钻探技术,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060
引用本文: 杨昆鹏,李鹏晓,敖康伟,等. 富满油田长封固段低摩阻超低密度水泥浆固井技术[J]. 石油钻探技术,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060
YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of Fuman Oilfield [J]. Petroleum Drilling Techniques,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060
Citation: YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of Fuman Oilfield [J]. Petroleum Drilling Techniques,2023, 51(6):64-70. DOI: 10.11911/syztjs.2023060

富满油田长封固段低摩阻超低密度水泥浆固井技术

基金项目: 中国石油天然气集团有限公司科技项目“复杂超深井固井密封完整性技术研究”(编号:2021DJ4105)资助。
详细信息
    作者简介:

    杨昆鹏(1987—),男,河北唐山人,2012年毕业于南京工业大学化学工程与工艺专业,2015年获南京工业大学化学工程专业硕士学位,工程师,主要从事固井技术方面的研究及现场技术服务工作。E-mail:31502226@qq.com

  • 中图分类号: TE254

Ultra-Low Density and Low-Friction Cement Slurry Cementing Technologies in Long Sealing Sections of Fuman Oilfield

  • 摘要:

    为解决塔里木富满油田二开固井裸眼段长、漏失压力低,1.35 kg/L水泥浆固井一次上返成功率低,且水泥浆流变性和稳定性差、早期强度发展慢等技术难题。依据紧密堆积设计理论,通过研究低密度水泥浆用增强剂、优选耐压减轻材料、优化低黏降滤失剂和高效梳型聚羧酸减阻剂等配套外加剂的加量,研制了密度为1.20 kg/L的低摩阻超低密度水泥浆,该水泥浆沉降稳定性低于0.02 kg/L,K≤0.5 Pa·snn≥0.8;24 h底部抗压强度大于7.5 MPa,较传统低密度水泥浆抗压强度提高50%以上,满足长封固段、高温高压、易漏失井固井对水泥浆性能的要求。低摩阻超低密度水泥浆在富满油田应用了3井次,效果良好,平均固井质量合格率88.0%。研究及现场应用表明,低摩阻超低密度水泥浆可以为富满油田安全高效开发提供支持。

    Abstract:

    This paper aims to solve the technical problems of long open hole section, low leakage pressure, low success rate of one-time return of cement slurry of 1.35 kg/L, poor rheological property and stability of cement slurry, and the slow development of early strength in the second-opening cementing of Fuman Oilfield in the Tarim Basin. The low-friction and ultra-low density cement slurry system of 1.20 kg/L was developed based on the theory of close packing design by studying the reinforcing agent for low-density cement slurry and optimizing the pressure-resistant and light material, the low-viscosity fluid loss agent, and high-efficiency comb-type polycarboxylate drag reducer, etc. The settlement of the system was stable and lower than 0.02 kg/L, K≤0.5 Pa·sn, n≥0.8; the 24 h bottom compressive strength was larger than 7.5 MPa, which was more than 50% higher than that of the traditional low-density cement slurry system and met the requirements of performance and mechanical properties for long sealing section, high temperature and high pressure, and easy leakage well. The field application of three wells has achieved good results, with an average pass rate of 88.0%. The research and field application show that the ultra-low density and low-Friction Cement Slurry can provide support for the safe and efficient development of Fuman Oilfield.

  • 图  1   增强材料的微观结构

    Figure  1.   Microstructure of reinforced material

    表  1   空心玻璃微珠破损率测试结果

    Table  1   Test results for the damage rate of hollow glass beads

    名称生产工艺耐压等级
    /MPa
    平均粒径
    /μm
    密度
    /(kg·L−1
    不同压力下的空心玻璃微珠破损率,%
    100 MPa90 MPa80 MPa70 MPa60 MPa
    A固体粉末法82.7900.60229.220.614.512.18.2
    B软化学法82.7950.60251.537.437.535.230.8
    C液相物化法82.7920.60450.532.634.131.432.2
    下载: 导出CSV

    表  2   水泥、增强材料、空心玻璃微珠三元体系堆积密度计算结果

    Table  2   Packing density calculation results of cement, reinforced material and hollow glass bead ternary system

    3种材料的配比,%堆积密实度
    水泥增强材料空心玻璃微珠
    10010100.7455
    10020200.7574
    10030300.7655
    10040400.7747
    10050500.7874
    10060600.7985
    10070700.8091
    10080800.8197
    10080900.8294
    100801000.8325
    10090800.8209
    10090900.8313
    100901000.8369
    100100800.8315
    100100900.8335
    1001001000.8394
    100110800.8405
    100120800.8422
    下载: 导出CSV

    表  3   水泥、增强材料与空心玻璃微珠配比对抗压强度和流动度的影响

    Table  3   Influence by different proportion of cement,reinforced materialand hollow glass bead on compressive strength and fluidity

    试验
    编号
    3种材料的配比,%密度/
    (kg·L−1
    24 h抗压强
    度/MPa
    流动度/
    cm
    水泥增强材料空心玻璃微珠
    1100120801.207.818
    21001001001.208.820
    310090801.208.020
    410080901.209.523
    510080801.209.224
    610070701.207.827
    下载: 导出CSV

    表  4   降滤失剂F加量对水泥浆滤失量和流动度的影响

    Table  4   Influence of dosage of filter reducer F on the filtration loss and fluidity of cement slurry

    试验
    编号
    降滤失剂F
    加量,%
    密度/
    (kg·L−1
    90 ℃下滤失
    量/mL
    流动度/
    cm
    151.209618
    261.208418
    371.207218
    481.206419
    591.205619
    6101.204019
    7111.204019
    下载: 导出CSV

    表  5   减阻剂D加量对水泥浆流变性和沉降稳定性的影响

    Table  5   Influence of dosage of drag reducer D on the rheological property and settling stability of cement slurry

    减阻剂D加量,%不同温度下的流性指数不同温度下的稠度系数/(Pa·sn不同温度下的沉降稳定性/(kg·L1
    室温90 ℃110 ℃室温90 ℃110 ℃室温90 ℃110 ℃
    00.3530.4250.5676.6003.0102.0800.010.010.01
    0.50.7440.7680.8110.6670.6450.5120.010.010.01
    1.00.8160.8340.8440.4330.4120.3980.020.020.02
    1.50.8540.8660.8540.3850.3560.3850.020.030.05
    2.00.9100.9250.9200.2170.2140.1980.050.060.08
    2.50.9350.9640.9660.1140.1020.1120.100.140.16
    下载: 导出CSV

    表  6   超低密度水泥浆耐压性能测试结果

    Table  6   Pressure-resistant performance test results of ultra-low density cement slurry

    压力/
    MPa
    初始密度/
    (kg·L−1
    耐压密度/
    (kg·L−1
    密度差/
    (kg·L−1
    密度变化率,
    %
    1001.201.220.021.67
    901.201.210.010.83
    801.201.210.010.83
    701.201.210.010.83
    601.201.200.000.00
    下载: 导出CSV

    表  7   超低密度水泥浆综合性能测试条件

    Table  7   Test conditions for comprehensive performance of ultra-low density cement slurry

    温度/℃压力/MPa升温时间/min
    1108070
    1007060
    906050
    下载: 导出CSV

    表  8   超低密度水泥浆综合性能测试结果

    Table  8   Comprehensive performance test results of ultra-low density cement slurry

    密度/
    (kg·L−1
    流动
    度/cm
    稠化
    时间/min
    温度高点
    稠化/min
    密度高点
    稠化/min
    滤失
    量/mL
    游离液
    含量/%
    沉降稳定
    性(kg·L−1
    72 h顶部
    抗压强度/
    MPa
    24 h底部
    抗压强度/
    MPa
    48 h底部
    抗压强度/
    MPa
    流变性
    nK/(Pa·sn
    1.202337533333344.000.018.324.528.00.8710.472
    1.202138740636441.000.026.724.525.00.8840.379
    1.202037735137342.800.024.726.026.90.8540.469
    下载: 导出CSV

    表  9   满深XX井邻井情况

    Table  9   Adjacent well situation of Well Manshen XX

    井号井深/m层位套管/mm固井方式施工排量/(L·s−1钻井液密度/(kg·L−1水泥浆密度/(kg·L−1复杂情况
    邻井14 790C273.05单级501.301.88 下套管过程漏失,先坐挂,
    正注反挤施工
    邻井24 830C244.5单级30~351.301.30+1.88 未漏
    邻井34 682C244.5单级30~351.301.30+1.88 下套管过程漏失,先坐挂,
    正注反挤施工
    下载: 导出CSV
  • [1] 谢会文,能源,敬兵,等. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探,2017,22(3):1–11. doi: 10.3969/j.issn.1672-7703.2017.03.001

    XIE Huiwen, NENG Yuan, JING Bing, et al. New discovery in exploration of Cambrian–Ordovician dolomite buried hills in Tarim Basin and its significance[J]. China Petroleum Exploration, 2017, 22(3): 1–11. doi: 10.3969/j.issn.1672-7703.2017.03.001

    [2] 温声明, 王建忠, 王贵重, 等. 塔里木盆地火成岩发育特征及对油气成藏的影响[J]. 石油地球物理勘探, 2005, 40(增刊1): 22–39.

    WEN Shengming, WANG Jianzhong, WANG Guizhong, et al. Characteristics of igneous rock development and its influence on hydrocarbon accumulation in Tarim Basin[J]. Oil Geophysical Prospecting, 2005, 40(supplement1): 22–39.

    [3] 何发岐,俞仁连,韩振华. 塔里木盆地塔河油田近年来勘探主要成果与下一步勘探方向[J]. 石油试验地质,2004,26(1):23–27.

    HE Faqi, YU Renlian, HAN Zhenhua. The main exploration achievements and future exploration direction of Tahe Oilfield in Tarim Basin in recent years[J]. Petroleum Geology & Experiment, 2004, 26(1): 23–27.

    [4] 王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28–33.

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28–33.

    [5] 吴彪. 塔里木油田火成岩地层漏失原因分析及对策[J]. 清洗世界,2019,35(1):38–40.

    WU Biao. Cause analysis and countermeasures of igneous formation leakage in Tarim Oilfield[J]. Cleaning World, 2019, 35(1): 38–40.

    [6] 匡立新,陶谦. 渝东地区常压页岩气水平井充氮泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(3):39–45.

    KUANG Lixin, TAO Qian. Cementing technology using a nitrogen-filled foamed cement slurry for horizontal shale gas wells in the Eastern Chongqing Area[J]. Petroleum Drilling Techniques, 2022, 50(3): 39–45.

    [7] 王建云,张红卫,邹书强,等. 顺北油气田低压易漏层泡沫水泥浆固井技术[J]. 石油钻探技术,2022,50(4):25–30.

    WANG Jianyun, ZHANG Hongwei, ZOU Shuqiang, et al. Foamed cement slurry cementing technology for low-pressure and leakage-prone layers of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 25–30.

    [8] 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术,2021,49(1):67–73. doi: 10.11911/syztjs.2020071

    WU Bozhi, ZHANG Huaibing. Cementing technology of a self-healing cement slurry in the carbonate formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67–73. doi: 10.11911/syztjs.2020071

    [9] 王鼎,万向臣,杨晨. 低摩阻耐压防漏低密度水泥浆固井技术[J]. 钻井液与完井液,2022,39(5):608–614.

    WANG Ding, WAN Xiangchen, YANG Chen. Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608–614.

    [10] 闵江本,刘小利,万向臣. 长庆油田洛河水层防腐固井水泥浆及配套工艺技术[J]. 钻井液与完井液,2021,38(2):231–236.

    MIN Jiangben, LIU Xiaoli, WAN Xiangchen. Corrosion inhibitive cement slurry and supporting techniques for cementing the Luohe aquifer in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 231–236.

    [11] 李治衡,张晓诚,谢涛,等. 动态复杂压力下的水泥浆体系及性能评价[J]. 钻井液与完井液,2021,38(2):237–242.

    LI Zhiheng, ZHANG Xiaocheng, XIE Tao, et al. Study and application of evaluating the performance of cement slurries under dynamic complex pressures[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 237–242.

    [12] 黄柏宗. 紧密堆积理论优化的固井材料和工艺体系[J]. 钻井液与完井液,2001,18(6):1–9. doi: 10.3969/j.issn.1001-5620.2001.06.001

    HUANG Bozong. Cementing material and process system optimized by compact stacking theory[J]. Drilling Fluid & Completion Fluid, 2001, 18(6): 1–9. doi: 10.3969/j.issn.1001-5620.2001.06.001

    [13] 侯亚伟,田野,马春旭,等. 0.9 g/cm3超低密度水泥浆体系室内研究[J]. 钻井液与完井液,2021,38(3):351–355.

    HOU Yawei, TIAN Ye, MA Chunxu, et al. Laboratory research on 0.9 g/cm3 ultra-low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 351–355.

    [14] 陈晓华,狄伟. 针对裂缝性地层的低密度高强度韧性水泥浆体系研究[J]. 钻井液与完井液,2021,38(1):109–115. doi: 10.3969/j.issn.1001-5620.2021.01.018

    CHEN Xiaohua, DI Wei. Low-density and strength cement slurry for fractured formation[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 109–115. doi: 10.3969/j.issn.1001-5620.2021.01.018

    [15] 王思怡,杨浩,杨世翰,等. 外加剂对矿渣-粉煤灰地聚合物固井水泥浆的影响[J]. 特种油气藏,2022,29(4):169–174.

    WANG Siyi, YANG Hao, YANG Shihan, et al. Effects of admixtures on slag-fly ash geopolymer cementing slurry[J]. Special Oil & Gas Reserviors, 2022, 29(4): 169–174.

    [16] 王建瑶,杨昆鹏,梅明佳. 水不分散水泥浆体系适应性研究与现场应用[J]. 钻井液与完井液,2021,38(4):499–503.

    WANG Jianyao, YANG Kunpeng, MEI Mingjia. The adaptability and application of a water non-dispersible cement slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 499–503.

    [17] 李万东. 厄瓜多尔Parahuacu油田固井技术[J]. 石油钻探技术,2021,49(1):74–80. doi: 10.11911/syztjs.2020109

    LI Wandong. Cementing technology applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74–80. doi: 10.11911/syztjs.2020109

    [18] 高继超,李建华,周雪,等. 纳米基复合增强剂的研究与性能评价[J]. 钻井液与完井液,2020,37(5):651–655.

    GAO Jichao, LI Jianhua, ZHOU Xue, et al. Study and evaluation of a nano compound strength enhancer[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 651–655.

    [19] 李鹏晓,孙富全,何沛其,等. 紧密堆积优化固井水泥浆体系堆积密实度[J]. 石油钻采工艺,2017,39(3):307–312.

    LI Pengxiao, SUN Fuquan, HE Peiqi, et al. Packing compactness of cementing slurry system for close packing optimization[J]. Oil Drilling & Production Technology, 2017, 39(3): 307–312.

    [20] 谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术,2022,50(1):119–126.

    XIE Guanbao. Establishment of logging evaluation criteria for the cementing quality of low-density cement slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119–126.

    [21] 刘浩亚,鲍洪志,刘亚青,等. 改性高铝水泥浆的负温硬化性能及其增强机制[J]. 石油钻探技术,2021,49(2):54–60.

    LIU Haoya, BAO Hongzhi, LIU Yaqing, et al. Hardening properties and enhancement mechanisms of modified alumina cement at minus temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54–60.

    [22] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623–627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623–627.

    [23] 王敬朋,熊友明,路宗羽,等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634–640.

    WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 634–640.

    [24] 田野,宋维凯,侯亚伟,等. 大温差低密度水泥浆性能研究[J]. 钻井液与完井液,2021,38(3):346–350.

    TIAN Ye, SONG Weikai, HOU Yawei, et al. Study on performance of low-density cement slurry at big temperature differences[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 346–350.

    [25] 王胜,谌强,袁学武,等. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术,2021,49(6):73–80. doi: 10.11911/syztjs.2021009

    WANG Sheng, CHEN Qiang, YUAN Xuewu, et al. Research on a nano-composite cement slurry system suitable for low-temperature formations[J]. Petroleum Drilling Techniques, 2021, 49(6): 73–80. doi: 10.11911/syztjs.2021009

  • 期刊类型引用(10)

    1. 王博,吴媚,肖祖行,鲍静,张建军,张荔. 缝内暂堵二次转向主控因素及其影响规律. 断块油气田. 2025(03): 480-484 . 百度学术
    2. 江铭,邹清腾,肖壮,汪勇,葛婧楠,陈钊. 浅层页岩气井间压窜影响因素与防治优化. 石油实验地质. 2025(03): 693-704 . 百度学术
    3. 李紫妍,陈军斌,左海龙,王庆,欧阳雯,林天,刘波,任大忠. 页岩储层水力裂缝和天然裂缝交互规律. 断块油气田. 2024(02): 232-240 . 百度学术
    4. 尹帅,赵军辉,刘平,沈志成. 裂缝性储层天然缝与水力缝开启条件及扩展规律研究. 石油钻探技术. 2024(03): 98-105 . 本站查看
    5. 宋兆辉. 树莓状聚合物纳微米封堵剂的制备及性能评价. 石油钻探技术. 2024(03): 84-90 . 本站查看
    6. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
    7. 史小卫,孙麒涵,陈俊侠,林萌,吴会永,王洪建. 首山一矿水平井水力压裂应力阴影效应及裂缝演化机理. 能源与环保. 2024(08): 14-21 . 百度学术
    8. 余绍志,纪国法. 基于水力压裂裂缝扩展规律的天然气开发应用. 能源与环保. 2024(08): 242-247+253 . 百度学术
    9. 李德旗,刘春亭,朱炬辉,胥云,王荣,张俊成,吴凯,潘丹丹. 高闭合压力下深层页岩气促缝网强支撑压裂工艺. 石油钻采工艺. 2024(03): 336-345 . 百度学术
    10. 杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 . 百度学术

    其他类型引用(1)

图(1)  /  表(9)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  74
  • PDF下载量:  93
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-06-19
  • 修回日期:  2023-07-28
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-04
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回