Loading [MathJax]/jax/output/SVG/jax.js

BH−VDT3000垂直钻井系统研制与现场试验

黄峰, 陈世春, 刘立超, 郭超, 刘义彬, 史玉才

黄峰,陈世春,刘立超,等. BH−VDT3000垂直钻井系统研制与现场试验[J]. 石油钻探技术,2024,52(6):62−68. DOI: 10.11911/syztjs.2024114
引用本文: 黄峰,陈世春,刘立超,等. BH−VDT3000垂直钻井系统研制与现场试验[J]. 石油钻探技术,2024,52(6):62−68. DOI: 10.11911/syztjs.2024114
HUANG Feng, CHEN Shichun, LIU Lichao, et al. Development and field test of BH-VDT3000 vertical drilling system [J]. Petroleum Drilling Techniques, 2024, 52(6):62−68. DOI: 10.11911/syztjs.2024114
Citation: HUANG Feng, CHEN Shichun, LIU Lichao, et al. Development and field test of BH-VDT3000 vertical drilling system [J]. Petroleum Drilling Techniques, 2024, 52(6):62−68. DOI: 10.11911/syztjs.2024114

BH−VDT3000垂直钻井系统研制与现场试验

基金项目: 中国石油集团渤海钻探重大研发项目“BH−VDT3000垂直钻井工具研制”(编号:2021ZD02F−01)、中国石油天然气集团公司重点科技成果商业化产业化示范研究项目“BH−VDT垂直钻井技术商业化产业化示范”(编号:2023DQ0106−17(JT))联合资助。
详细信息
    作者简介:

    黄峰(1982—),男,江苏睢宁人,2005年毕业于河北科技大学机械设计制造及其自动化专业,2008年获河北科技大学机械制造及其自动化专业硕士学位,高级工程师,主要从事垂直钻井系统的研制与应用工作。E-mail:huangf502@163.com

  • 中图分类号: TE242

Development and Field Test of BH-VDT3000 Vertical Drilling System

  • 摘要:

    针对BH−VDT3000垂直钻井系统研制过程中遇到的技术问题,利用平衡趋势造斜率预测方法,分析了影响BH−VDT3000垂直钻井系统纠斜能力的因素及其影响规律,系统分析了BH−VDT3000第一代样机现场试验失败的原因,给出了第二代样机的结构、钻具组合及钻进参数优化方案,并进行了现场试验。理论研究及现场试验结果表明,推靠式垂直钻井系统的钻头侧向力指向井眼低边时有利于纠斜,钻头转角指向高边时不利于纠斜,选择钻具组合与钻井参数(含推靠力)时需要平衡二者对钻进趋势的影响,否则会失去纠斜能力;BH−VDT3000垂直钻井系统直径小、刚度低,若采用与大尺寸垂直钻井系统相同的钻具组合,极有可能失去纠斜能力;整体缩短导向头长度、导向翼肋与稳定器之间的距离,有助于提升中等尺寸垂直钻井系统的井斜控制能力。

    Abstract:

    Based on the technical problems encountered during the development of BH-VDT3000 vertical drilling system (VDS), the influencing factors and rules of its straightening capability were analyzed by the prediction method of equilibrium trend build-up rate. The reasons for the field test failure of the first-generation BH−VDT3000 prototype were comprehensively analyzed, thereafter the optimization scheme of the structure, bottom-hole assembly (BHA), and drilling parameters of the second-generation prototype were proposed. Field tests were also conducted. The theoretical research and field test results show that the bit lateral force of the push-the-bit VDS pointing to the low side of the borehole has positive impact on straightening, and the bit tilt angle pointing to the high side has passive impact on straightening. Their influences on the drilling trend should be balanced when selecting the BHA and drilling parameters (including the push-the-bit force), otherwise, the straightening capability will be lost. Because BH-VDT3000 VDS has a small diameter and low stiffness, it is very likely to lose the straightening capability if the same BHA of a large-size VDS is used. Shortening the overall length of the steering sub and the distance between the steering pads and the stabilizer can improve the straightening capability of the medium-size VDS.

  • 我国页岩气资源潜力巨大,实现页岩气经济效益开采对实现我国“双碳”发展目标具有重大意义。页岩地层钻完井过程中,当页岩与水基工作液(钻井液和压裂液)接触时,页岩自吸作用将驱动外部流体侵入页岩内部,诱发水化损伤,改变岩石结构,进一步促进自吸,导致页岩内部含水率上升、水化损伤加剧,显著影响页岩地层安全钻井与水力压裂效果[1-9]。由此可见,自吸是影响页岩地层钻完井工程优化设计的重要参考指标。

    针对页岩自吸作用,基于多孔介质渗吸理论,E. W. Washburn等人[10-12]以Lucas-Washburn、Terzaghi和Handy自吸模型为基础,探索了页岩自吸趋势。在此基础上,研究人员考虑页岩自吸的特殊性,开展了针对性研究。Wu Zhongwei等人[13-14]借助分形理论,明确了页岩孔隙的分形特征,建立了页岩分形自吸解析模型。何颂根等人[15-16]考虑不同孔隙类型,将页岩孔隙分为有机质孔、黏土孔、脆性矿物孔,建立了多重孔隙自吸模型。K. Makhanov和Liang Lixi等人[17-18]采用不同层理角度页岩,在室内进行了自吸试验,发现当自吸方向平行于页岩层理时,自吸量增加,说明层理属于高渗面,有利于自吸。针对页岩纳米孔隙发育特征,Wu Keliu等人[19]指出纳米尺度下页岩自吸可能具备边界滑移现象,并给出了相应的自吸修正方程。Wang Xiukun和李江涛等人[20-21]采用玻尔兹曼法、孔隙网络模拟等数值模拟手段,分析了流体在页岩纳米孔隙中的流动规律。

    虽然目前已经对页岩自吸开展了大量研究,但主要针对页岩复杂孔隙结构特征,尤其以固定孔隙结构为前提。然而,页岩黏土矿物发育,自吸过程中同步发生水化反应,形成结构损伤,提供了新的自吸路径,导致页岩自吸具备典型的“动态”特征。目前,曾凡辉等人[22-23]将自吸与核磁共振结合,证明了结构损伤对页岩自吸的促进作用。然而,如何实现水化损伤下的页岩自吸定量表征,是尚未解决的关键问题。因此,笔者聚焦水化损伤下的页岩动态自吸特征,通过室内试验,实现了自吸过程中页岩结构损伤的定量表征,建立了动态自吸毛细管力与动态迂曲度的计算方程,构建了页岩动态自吸模型,揭示了水化损伤对页岩自吸的影响机制,有助于科学、准确地评价页岩自吸特征与能力,为页岩地层钻完井优化设计提供理论支撑,助力我国页岩气的高效勘探开发。

    用四川盆地龙马溪组页岩岩样进行岩心自吸试验(悬吊岩样,下端面接触水),观测不同自吸时间下的页岩岩样表面,并测试页岩岩样不同自吸时间下的吸水量,结果如图1所示。由图1可知:随着自吸进行,水化结构损伤加剧,在24 h左右时岩样表面出现明显裂纹,而在自吸后期,裂纹没有进一步扩展趋势,表明前24 h是水化裂缝的主要发育段;在水化裂纹主要增长时间内(24 h内),页岩岩样吸水量的增幅最为显著。由此说明,水化裂纹是影响页岩吸水的主要因素。在此基础上,统计目前针对龙马溪组页岩的水化微观试验[24-26],以CT扫描、偏光显微镜等手段,观测页岩内部水化微裂纹的演化过程(见图2),发现页岩吸入水后水化导致微裂缝扩展演化,且水沿裂纹运移,最终在页岩表面形成宏观裂缝,从而显著提升页岩自吸能力。

    图  1  页岩岩样自吸过程中表面及其吸水率的变化
    Figure  1.  Changes in surface and water absorption of shale rock samples during spontaneous imbibition
    图  2  页岩水化裂纹多尺度演化过程[16-18]
    Figure  2.  Multiscale evolution process of shale hydration cracks[16-18]

    通过测定页岩岩样不同自吸时间下的孔隙结构参数,可以建立水化结构损伤的定量表征方法。由于页岩孔隙具有多尺度特征,依靠单一测试方法难以准确获取页岩结构特征。因此,以自吸试验为基础,结合压汞与氮气吸附试验,实现自吸过程中页岩孔隙结构的定量表征[27]

    以岩石基础物性(声波、电阻率及密度)为指标,选取相近2块岩样为一组,自吸不同时间并低温烘干后,一块岩样采用压汞法分析其孔径分布,一块岩样采用氮气吸附法分析其孔径分布,综合2类尺度下的孔径分布(见图3),确定不同自吸时间下的页岩平均孔径和孔隙度,结果如图4所示。由图4可知:随着自吸时间增长,水化造成的结构损伤增强,孔隙空间明显增大,平均孔径呈现增大趋势,在前24 h内孔隙结构参数变化最为剧烈;自吸后期,随着水化作用逐渐弱化,孔隙结构参数趋于稳定,整体变化趋势接近幂函数形式。原状页岩岩样平均孔径与孔隙度分别为7.5 nm和3.3%;受自吸过程中水化损伤的影响,当自吸达到稳定时,平均孔径与孔隙度增大至25.2 nm和6.3%。

    图  3  氮气吸附、压汞及联合表征示意
    Figure  3.  Joint characterization of mercury intrusion and nitrogen adsorption
    图  4  页岩岩样自吸过程中平均孔径与孔隙度的变化
    Figure  4.  Changes in average pore size and porosity of shale rock samples during spontaneous imbibition

    目前,研究页岩自吸时均将毛细管力设为定值,这在致密砂岩、碳酸盐岩等岩石自吸研究中具有适用性,但页岩地层强水化损伤会导致页岩孔隙结构发生变化。自吸过程中,页岩平均孔径的变化如图5所示。

    图  5  页岩岩样自吸过程中的孔径变化示意
    Figure  5.  Evolution of pore size during spontaneous imbibition of shale rock samples

    图5可知:无水化损伤时,自吸过程中页岩的平均孔径不发生变化;当产生水化损伤时,由于水化次生裂纹的演化,平均孔径在不断变化。

    Δλ(t)=λa(t+Δt)λo (1)

    式中:∆λ(t)为自吸时刻tt+∆t的平均孔径增量,nm;λo为原状平均孔径,nm;λa(t+Δt)为自吸时刻t+∆t的平均孔径,nm。

    自吸过程中页岩发生水化损伤演变,页岩的平均孔径处于动态变化中,导致页岩毛细管力也在动态变化。为此,笔者通过自吸过程中的极限条件与平均孔径曲线的几何关系进行水化损伤表征,如图6所示。由图6可知,在任意自吸时刻,平均孔径曲线有2大极限条件,分别为坐标轴垂直方向与平行方向,其物理解释为:

    图  6  页岩岩样自吸过程中的平均孔径演变示意
    Figure  6.  Evolution of average pore size during spontaneous imbibition of shale rock samples

    1)垂直方向上,孔径增长率dλ(t)/dt=∞,表明在自吸前缘水相介质遇见页岩基质,水化损伤作用瞬态完成,裂纹演化瞬间完成,此时平均孔径为自吸稳定下的最终页岩平均孔径λam,孔径增量∆λ=λamλo

    2)平行方向上,孔径增长率dλ(t)/dt=0,表明在自吸前缘水相介质遇见页岩基质,没有水化损伤产生,平均孔径无增长,此时页岩平均孔径保持初始孔径λo,平均孔径增量∆λ=0。

    基于此,可以得到任意自吸时刻t时水化作用对平均孔径影响的极限条件:

    {Δλ=λmaλo,dλa(t)dt=Δλ=0,dλa(t)dt=0 (2)

    确定2个极限条件以后,平均孔径曲线任意位置A(自吸任意时刻)的孔径增长速率位于2个极限条件之间(0<dλa(t)dt<)。基于平均孔径曲线上任意时间点位置处斜率与2个极限状态的几何关系,定义平均孔径变化系数δλ(t)

    δλ(t)=(λmaλo)arctandλa(t)dtπ 2 (3)

    平均孔径变化系数的物理含义是某一自吸时刻下,水化损伤对平均孔径的影响程度。

    将平均孔径变化系数代入毛细管力公式,可得动态毛细管力表达式:

    pc(t)=4σwcosθλo+(λmaλo)arctandλa(t)dtπ 2 (4)

    式中:pc(t)为动态毛细管力,MPa;σw为表面张力,N/m;θ为润湿角,(°)。

    流体进入岩石内的多孔介质后,在其内部流动时,由于多孔介质颗粒的分布、形态等具有非均质性,流体的流线是弯曲的,对于流线的弯曲特征,通常采用迂曲度(τ)来描述。由于技术所限,目前难以将一块岩样所有位置的迂曲度全部提取出来,因此,采用平均迂曲度进行分析。

    τa=1niτi(i=1,2,3,,n) (5)

    式中:τa为平均迂曲度;τi为第i条流线迂曲度;n为流线数量。

    假定页岩颗粒为球形颗粒与方体颗粒,分别获取球形颗粒与方体颗粒下的典型流线(分别为直线形、Z字形和曲面形)[28-29],如图7所示。页岩平均迂曲度的表达式为:

    图  7  圆球与方体颗粒下的各类流动类型
    Figure  7.  Various flow types under circular and square particles
    τa=(1ϕ){1+3233π 1ϕ23233π 1ϕ2+3233π 1ϕ2 + π223233π 1ϕ2+1 + 121ϕ + (11ϕ1)2+1411ϕ1} + ϕ (6)

    式中:ϕ为孔隙度。

    依据水化损伤下的孔隙度变化趋势,基于3.1节的方法,建立不同自吸时间下孔隙度变化幅度表达式:

    δϕ(t)=(ϕmaϕo)arctandϕa(t)dtπ 2 (7)

    式中:δϕ(t)为自吸t时刻下孔隙度的变化幅度;ϕma为自吸稳定后的孔隙度;ϕo为原状孔隙度。

    结合式(6)和式(7),可获得水化损伤下页岩动态迂曲度的表达式:

    τa(t)={1[ϕ + δϕ(t)]}{1+3233π 1[ϕ + δϕ(t)]23233π 1[ϕ + δϕ(t)]2+3233π 1[ϕ + δϕ(t)]2 + π 223233π 1[ϕ + δϕ(t)]2+1 + 121[ϕ + δϕ(t)] + (11[ϕ + δϕ(t)]1)2+1411[ϕ + δϕ(t)]1} + [ϕ + δϕ(t)] (8)

    对于页岩自吸,毛细管力为主控驱动力。此外,由于黏土–水分子的双电层效应,页岩具有半透膜特征[30],因此,渗透压也是驱动力,其计算公式为:

    pπ =ηRTˉVlnanam (9)

    式中:pπ 为渗透压,Pa;ˉV为水的偏摩尔体积,m3/mol;am为岩石活度;an为外部流体活度;T为温度,K;R为气体常数,J/(mol·K);η为膜效率。

    同时,由于本文探讨的自吸模式为垂直端面自吸,重力为阻力。因此,综合毛细管力、渗透压及重力,依据LW自吸模型,得到自吸表达式:

    dLtdt=λ232μwLt(4σwcosθλ+ηRTˉVlnanamρgLs) (10)

    式中:Lt为弯曲毛细管实际吸水长度,m;Ls为吸水直线长度,m;μw为液体黏度,Pa·s;ρ为液体密度,kg/m3g为重力加速度,m/s2

    根据迂曲度的定义得知τ=LtLsvt=τvs,从而式(10)可以写为:

    dLsdt = λ232μwτ2(4σwcosθλ+ηRTˉVlnanam)1Lsλ2ρg32μwτ2 (11)

    当自吸达到稳定时,水上升的速度dLsdt=0,可以求解得到平衡高度。基于自吸初始条件Ls=0,对式(11)积分,可得单根弯曲毛细管的吸水方程:

    {t=AhB2hln(1BhAhLs)LsBhAh=λ2(4σwcosθλ+ηRTˉVlnanam)32μwτ2Bh=ρgλ232μwτ2 (12)

    在此基础上,进一步考虑水化结构损伤,融入动态毛细管力与动态迂曲度,代入式(12),进而得到水化损伤下的页岩动态自吸方程:

    dLsdt=[λo+δλ(t)]232μw{τa[ϕo+δϕ(t)]}2Ls{4σwcosθλo+δλ(t) + ηRTˉVln(anam)}ρg[λo+δλ(t)]232μw{τa[ϕo+δϕ(t)]}2 (13)

    采用数值积分方法,利用插值方法对式(13)积分。基于插值法原理,对被积函数f(x)进行n次插值,可逼近积分值。积分过程为:

    {baf(x)dxnk=0f(xk)balk(x)dxbalk(x)dx=bajkxxjxkxjdx (14)

    利用上述吸水方程可求得平均孔径下的单个毛细管内吸水长度。页岩内部存在多根毛细管,借助多束毛细管模型(见图8),求取自吸体积(Vi(t)):

    图  8  岩石多束毛管模型[31]
    Figure  8.  Rock multi-bundle capillary model[31]
    Vi(t)=Ls(t)Ap=LsAϕ(t) (15)

    式中:Ap为孔隙横截面,m2

    值得注意的是,对于某一时刻(如t时刻)的吸水量,需选择对应时刻的ϕ(t)。基于吸水体积和流体密度,可得到该时刻下的吸水质量,进而利用吸水质量与岩样初始质量的比值,求得岩样的吸水率:

    w(t)=W(t)WoWo=ρVi(t)Wo (16)

    页岩动态自吸模型求解流程如图9所示。由图9可知,本文所构建模型考虑了水化作用所形成渗透压、动态毛细管力及动态迂曲度的影响,更符合页岩自吸实际情况。

    图  9  页岩动态自吸模型求解流程
    Figure  9.  Solution process for shale dynamic spontaneous imbibition model

    利用本文模型预测页岩岩样的自吸曲线,并与页岩岩样实际自吸曲线对比,以验证模型的准确性。图10为3个页岩岩样的实际自吸曲线与模型预测自吸曲线的对比。由图10可知,3个页岩岩样的自吸曲线与模型预测自吸曲线的对应性较好,部分区域有一定偏差,这主要是因为每个岩样的非均质性及页岩物性测试中可能存在偏差。验证结果表明,本文构建的动态自吸模型对页岩岩样具有很好的适用性,能够准确预测页岩自吸情况。

    图  10  模型预测自吸曲线与实际自吸曲线的对比
    Figure  10.  Comparison between the model predicted and actual spontaneous imbibition curves

    基于本文构建的自吸模型,以驱动力和迂曲度分类,开展了不同类型自吸模型对比分析,结果如图11所示。由图11可知:

    图  11  不同自吸模型预测自吸曲线的对比
    Figure  11.  Comparison of predicting spontaneous imbibition curves by different spontaneous imbibition models

    1)当毛细管流线特性一定时(见图11(a)),忽略渗透压,驱动力较小时预测的自吸量偏小,由此可以看出,页岩的半透膜效应对自吸具有促进作用;忽略水化损伤导致的毛细管力变化,会导致预测过程中的驱动力较大(流动阻力保持定值),造成预测的自吸量偏大。

    2)当驱动力一定时(见图11(b)),假设毛细管为平直毛细管,忽略弯曲毛细管的流动阻力时,预测的自吸量较大。考虑静态弯曲毛细管的流动阻力时,预测的自吸量明显偏小,这主要是因为,随着水化损伤增加,迂曲度降低,流动阻力降低,导致考虑静态弯曲毛细管时预测的自吸量偏低。

    3)综合对比,本文构建的动态自吸模型的预测自吸曲线与实测自吸曲线拟合程度最好,说明了水化损伤对页岩自吸的重要性。此外,也说明水化损伤同步作用于自吸驱动与自吸阻力,必须同时考虑两者的动态变化,才能科学表征页岩的自吸。

    基于本文构建的动态自吸模型,进行了页岩动态自吸影响因素分析,结果如图12所示。由图12可知:随着孔隙度增大,页岩内部储集流体的空间增大,吸水通道随之增大,使内部毛细管迂曲度减轻,造成流动阻力降低,从而使自吸能力显著提高。随着迂曲度增大,页岩内部毛细管道更为曲折,流动阻力更大,水更难吸入页岩内部,导致自吸量显著减小。

    图  12  页岩动态自吸影响因素分析
    Figure  12.  Analysis of factors influencing shale dynamic spontaneous imbibition

    更为明显的是,随着迂曲度增大,自吸平衡时间明显增长。因为高迂曲度对应高流动阻力,使吸水流动过程放缓。因此,低迂曲度下,自吸效应能更快达到平衡。随着外部流体活度增大,水化作用增强,对页岩结构损伤更为严重,产生更多水化裂纹,使流动空间增大,从而利于外部流体侵入页岩,加剧自吸。同时,外部流体活度较大,易在页岩内外形成较大活度差。当膜效率一定时,高活度差将导致渗透压增大,增大了页岩外部驱动力。随着接触角减小,亲水性增加,毛细管力增强,导致自吸量增大,页岩自吸能力增强。

    1)随着自吸时间延长,水化损伤加剧,前24 h是水化裂缝的主要发育阶段,自吸后期水化损伤达到稳定。自吸过程中在水化损伤作用下,页岩平均孔径与孔隙度呈现明显增大趋势,当自吸达到稳定状态时,试验所用页岩岩样的平均孔径与孔隙度分别提升至约25.2 nm和6.3%。

    2)考虑水化结构损伤的影响,建立了自吸过程中页岩动态毛细管力与动态迂曲度的表达式。在此基础上,融入LW自吸模型,构建了页岩动态自吸模型,并验证了模型的准确性与适用性。

    3)通过对比分析自吸模型,论证了水化损伤对自吸驱动与自吸阻力的同步作用效应,因此必须考虑水化损伤下的动态驱动力与动态自吸阻力,才能精准表征页岩的自吸。

    4)利用构建的页岩动态自吸模型,分析了影响页岩自吸的因素,发现随孔隙度增大、迂曲度降低、流体活度增大及接触角减小,页岩具备更强的驱动力与更小的流动阻力,自吸速率与自吸量均显著提升。

  • 图  1   BH−VDT垂钻系统的总体结构

    Figure  1.   Overall structure of BH-VDT VDS

    图  2   BH−VDT钻具组合钻进趋势预测示意

    Figure  2.   Drilling trend prediction of BH-VDT BHA

    图  3   稳定器与推靠翼肋距离对第一代样机纠斜能力的影响

    Figure  3.   Influence of distance between stabilizer and push-the-bit pads on straightening capability of first-generation prototype

    图  4   钻压对第一代样机纠斜能力的影响

    Figure  4.   Influence of weight-on-bit on straightening capabilityof first-generation prototype

    图  5   推靠力对第一代样机纠斜能力的影响

    Figure  5.   Influence of push-the-bit force on straighteningcapability of first-generation prototype

    图  6   第二代BH−VDT3000样机的总体结构

    Figure  6.   Overall structure of second-generation BH-VDT3000 prototype

    图  7   钻压对第二代样机纠斜能力的影响

    Figure  7.   Influence of weight-on-bit on straightening capabilityof second-generation prototype

    图  8   推靠力对第二代样机纠斜能力的影响

    Figure  8.   Influence of push-the-bit force on straighteningcapability of second-generation prototype

    表  1   第一代BH−VDT3000样机现场试验效果对比

    Table  1   Comparisons of field test results of first-generation BH-VDT3000 prototype

    井段 钻具组合 钻头类型及新度 钻压/kN 转速/(r·min−1 段长/m 井斜角/(°) 机械钻速/(m·h−1
    领眼段 光钻铤 JZ牙轮钻头,新度100% 80~120 70 24 0.44~0.64 1.78
    ϕ241.3 mm井段 BH−VDT3000钻具组合 DBS锥齿PDC钻头,新度100% 40~80 60~70 9 0.64→1.72 17.64
    ϕ241.3 mm井段 PowerV 675钻具组合 DBS修复PDC钻头,新度100% 40~60 60~70 17 1.72→0.28 10.00
     注:BH−VDT3000钻具组合中只有一个单稳定器,稳定器在BH−VDT3000上方,与推靠翼肋的距离16.00 m;PowerV 675钻具组合中有2个稳定器,下稳定器在PowerV 675上方,与推靠翼肋的距离约4.60 m。
    下载: 导出CSV

    表  2   第一和第二代BH−VDT3000样机现场试验效果对比

    Table  2   Comparison of field test results of first-generation and second-generation BH-VDT3000 prototypes

    井名钻压/kN转速/(r·min−1扭矩/(kN·m)排量/(L·s−1试验井段/m进尺/m工作时间/h井斜角/(°)
    入井出井
    博孜3−H5井40~8060~706~15354 095~4 10490.50.641.72
    ManS71−H5井80~10085~957~1834~384 575~4 6659025.00.500.36
    下载: 导出CSV
  • [1] 刘以明,蔡文军,王平,等. Power V和机械式随钻测斜仪在黑池1井的应用[J]. 石油钻探技术,2006,34(1):71–73. doi: 10.3969/j.issn.1001-0890.2006.01.021

    LIU Yiming, CAI Wenjun, WANG Ping, et al. Application of Power V and mechanical inclinometer in Heichi 1 Well[J]. Petroleum Drilling Techniques, 2006, 34(1): 71–73. doi: 10.3969/j.issn.1001-0890.2006.01.021

    [2]

    BARR J D, CLEGG J M, RUSSELL M K. Steerable rotary drilling with an experimental system[R]. SPE 29382, 1995.

    [3] 薄和秋,赵永强. Verti Trak垂直钻井系统在川科1井中的应用[J]. 石油钻探技术,2008,36(2):18–21. doi: 10.3969/j.issn.1001-0890.2008.02.006

    BO Heqiu, ZHAO Yongqiang. Application of Verti Trak in Chuanke-1 Well[J]. Petroleum Drilling Techniques, 2008, 36(2): 18–21. doi: 10.3969/j.issn.1001-0890.2008.02.006

    [4]

    de PATER C J H, ZOBACK M D, WRIGHT C A, et al. Complications with stress tests-insights from a fracture experiment in the ultra-deep KTB borehole[R]. SPE 36437, 1996.

    [5] 柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石油机械,2020,48(1):1–11.

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.

    [6] 王锡洲. 捷联式自动垂直钻井系统的研制及现场试验[J]. 石油钻探技术,2010,38(3):13–16. doi: 10.3969/j.issn.1001-0890.2010.03.003

    WANG Xizhou. Development and field test of automated strap-down vertical drilling system[J]. Petroleum Drilling Techniques, 2010, 38(3): 13–16. doi: 10.3969/j.issn.1001-0890.2010.03.003

    [7] 孙峰,吕官云,马清明. 捷联式自动垂直钻井系统[J]. 石油学报,2011,32(2):360–363. doi: 10.7623/syxb201102029

    SUN Feng, LYU Guanyun, MA Qingming. A strap-down automatic vertical drilling system[J]. Acta Petrolei Sinica, 2011, 32(2): 360–363. doi: 10.7623/syxb201102029

    [8] 蒋金宝,陈养龙,倪红坚. UPC-VDS垂直钻井系统在顺南地区的应用[J]. 断块油气田,2014,21(6):790–793.

    JIANG Jinbao, CHEN Yanglong, NI Hongjian. Application of UPC-VDS vertical drilling system in Shunnan area[J]. Fault-Block Oil & Gas Field, 2014, 21(6): 790–793.

    [9] 汝大军,张健庚,周胜鹏,等. BH-VDT5000垂直钻井系统在克深203井的应用[J]. 石油钻采工艺,2012,34(4):1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    RU Dajun, ZHANG Jiangeng, ZHOU Shengpeng, et al. Application of the vertical drilling system BH-VDT5000 on Well Keshen 203[J]. Oil Drilling & Production Technology, 2012, 34(4): 1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    [10] 滕学清,刘洪涛,李宁,等. 塔里木博孜区块超深井自动垂直钻井难点与技术对策[J]. 石油钻探技术,2021,49(1):11–15. doi: 10.11911/syztjs.2020113

    TENG Xueqing, LIU Hongtao, LI Ning, et al. Difficulties and technical countermeasures for automatic vertical drilling in ultra-deep wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11–15. doi: 10.11911/syztjs.2020113

    [11] 伊明,赵继斌,方弘廉,等. 国产自动垂直钻井系统技术突破与现场应用[J]. 钻采工艺,2024,47(2):159–168. doi: 10.3969/J.ISSN.1006-768X.2024.02.18

    YI Ming, ZHAO Jibin, FANG Honglian, et al. Technology breakthrough and field application of domestically produced automatic vertical drilling system[J]. Drilling & Production Technology, 2024, 47(2): 159–168. doi: 10.3969/J.ISSN.1006-768X.2024.02.18

    [12] 田玉栋,柳贡慧,齐悦,等. DQCZ垂直钻井系统导向执行机构的优化完善[J]. 钻采工艺,2023,46(6):152–157. doi: 10.3969/J.ISSN.1006-768X.2023.06.24

    TIAN Yudong, LIU Gonghui, QI Yue, et al. Optimization and improvement of steering actuator of DQCZ vertical drilling system[J]. Drilling & Production Technology, 2023, 46(6): 152–157. doi: 10.3969/J.ISSN.1006-768X.2023.06.24

    [13] 康建涛,苏海峰,张川,等. BH-VDT大尺寸垂直钻井工具设计优化与应用[J]. 长江大学学报(自然科学版),2021,18(6):63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009

    KANG Jiantao, SU Haifeng, ZHANG Chuan, et al. Design optimization and application of BH-VDT large size vertical drilling tool[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 63–68. doi: 10.3969/j.issn.1673-1409.2021.06.009

    [14] 康建涛,汝大军,马哲,等. BH-VDT垂直钻井系统导向块结构优化设计及现场试验[J]. 石油钻采工艺,2019,41(4):475–479.

    KANG Jiantao, RU Dajun, MA Zhe, et al. Structure design optimization and field test on the guide block of BH-VDT vertical drilling system[J]. Oil Drilling & Production Technology, 2019, 41(4): 475–479.

    [15] 陶松龄,陈世春,徐明磊,等. 滑动推靠式垂直钻井系统结构性能优化及应用[J]. 石油矿场机械,2021,50(1):77–83. doi: 10.3969/j.issn.1001-3482.2021.01.012

    TAO Songling, CHEN Shichun, XU Minglei, et al. Structural performance optimization and field application of the sliding push type vertical drilling system[J]. Oil Field Equipment, 2021, 50(1): 77–83. doi: 10.3969/j.issn.1001-3482.2021.01.012

    [16] 杨春旭,韩来聚,步玉环,等. 垂直钻井系统配合单稳定器力学性能研究[J]. 断块油气田,2012,19(3):364–369.

    YANG Chunxu, HAN Laiju, BU Yuhuan, et al. Study on mechanical property of vertical drilling systems matching with single stabilizer[J]. Fault-Block Oil & Gas Field, 2012, 19(3): 364–369.

    [17] 史玉才,管志川,赵洪山,等. 底部钻具组合造斜率预测新方法[J]. 中国石油大学学报(自然科学版),2017,41(1):85–89. doi: 10.3969/j.issn.1673-5005.2017.01.010

    SHI Yucai, GUAN Zhichuan, ZHAO Hongshan, et al. A new method for build-up rate prediction of bottom-hole assembly in well drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(1): 85–89. doi: 10.3969/j.issn.1673-5005.2017.01.010

    [18]

    WANG H, GUAN Z C, SHI Y C, et al. Drilling trajectory prediction model for push-the-bit rotary steerable bottom hole assembly[J]. International Journal of Engineering, 2017, 30(11): 1800–1806.

    [19]

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Study on build-up rate of push-the-bit rotary steerable bottom hole assembly[J]. Journal of Applied Science and Engineering, 2017, 20(3): 401–408.

    [20]

    SHI Yucai, TENG Zhixiang, GUAN Zhichuan, et al. A powerful build-up rate (BUR) prediction method for the static push-the-bit rotary steerable system (RSS)[J]. Energies, 2020, 13(18): 4847. doi: 10.3390/en13184847

  • 期刊类型引用(7)

    1. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 . 百度学术
    2. 马成云,窦益华,邓金根,冯永存,艾二鑫,赵凯,惠城. 动态裂缝堵漏试验装置的研制与应用. 石油机械. 2023(12): 25-30 . 百度学术
    3. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 . 百度学术
    4. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
    5. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 . 百度学术
    6. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
    7. 范胜,宋碧涛,陈曾伟,李大奇,刘金华,成增寿. 顺北5-8井志留系破裂性地层提高承压能力技术. 钻井液与完井液. 2019(04): 431-436 . 百度学术

    其他类型引用(3)

图(8)  /  表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  41
  • PDF下载量:  62
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-11-17
  • 刊出日期:  2024-11-24

目录

/

返回文章
返回