连续油管打捞连续油管关键工具研究与应用

艾白布•阿不力米提, 庞德新, 王一全, 郭新维, 杨文新, 焦文夫

艾白布•阿不力米提, 庞德新, 王一全, 郭新维, 杨文新, 焦文夫. 连续油管打捞连续油管关键工具研究与应用[J]. 石油钻探技术, 2019, 47(6): 89-95. DOI: 10.11911/syztjs.2019117
引用本文: 艾白布•阿不力米提, 庞德新, 王一全, 郭新维, 杨文新, 焦文夫. 连续油管打捞连续油管关键工具研究与应用[J]. 石油钻探技术, 2019, 47(6): 89-95. DOI: 10.11911/syztjs.2019117
AIBAIBU Abulimit, PANG Dexin, WANG Yiquan, GUO Xinwei, YANG Wenxin, JIAO Wenfu. The Research and Application of a Key Tool for Coiled Tubing Fishing with Coiled Tubing[J]. Petroleum Drilling Techniques, 2019, 47(6): 89-95. DOI: 10.11911/syztjs.2019117
Citation: AIBAIBU Abulimit, PANG Dexin, WANG Yiquan, GUO Xinwei, YANG Wenxin, JIAO Wenfu. The Research and Application of a Key Tool for Coiled Tubing Fishing with Coiled Tubing[J]. Petroleum Drilling Techniques, 2019, 47(6): 89-95. DOI: 10.11911/syztjs.2019117

连续油管打捞连续油管关键工具研究与应用

基金项目: 国家科技重大专项“大型油气田及煤层气开发”子课题“深层连续油管作业与增产改造施工技术”(编号:2016ZX05023–006–003–001)及“深层连续油管作业与增产改造先导实验”(编号:2016ZX05023–006–003–002)部分研究内容
详细信息
    作者简介:

    艾白布•阿不力米提(1984—),男,新疆克拉玛依人,2010年毕业于中国石油大学(华东)机械工程专业,2013年获中国石油大学(华东)机械工程专业硕士学位,工程师,主要从事油气田开发方面的研究工作。E-mail:aibaibu@163.com

  • 中图分类号: TE358+.4

The Research and Application of a Key Tool for Coiled Tubing Fishing with Coiled Tubing

  • 摘要:

    针对用常规管柱打捞连续油管作业效率低、风险和施工强度高等问题,在调研连续油管作业技术现状的基础上,提出了连续油管打捞连续油管的思路,针对现场技术需求研发了专用打捞工具。通过模块化结构设计,在专用打捞工具中集成了鱼顶旋转引入、鱼顶检测、鱼顶抓获及剪切等功能机构,使其能够适应连续油管打捞连续油管的工况。模拟计算和室内试验证明,专用打捞工具的性能达到了设计要求。该专用打捞工具在塔里木油田X–1井ϕ88.9 mm生产管柱内进行了13次打捞连续油管的作业,累计捞获井内严重遇卡的ϕ38.1 mm连续油管2 851.87 m,捞获率100%,作业效率是常规管柱打捞作业的4倍,验证了专用打捞工具性能的稳定性。研究结果表明,连续油管专用打捞工具能够满足打捞连续油管的要求,可提高打捞连续油管的成功率和作业效率。

    Abstract:

    In view of the low efficiency, high risk and high labor intensity of coiled tubing fishing with a conventional tubing string, research was conducted to investigate the current status of coiled tubing operation technologies. The process of coiled tubing fishing with coiled tubing was proposed, and a specific tool was developed. By virtue of its modular design, the tool was able to integrate the functions of fish top rotation entrance, fish top detection, fish top capture and shearing into the tool, so that the tool could adapt to the operation conditions of coiled tubing fishing. The results of simulation calculation and laboratory test verified that the performance of this tool met the desired design requirements. This fishing tool was used in Well X–1 of Tarim Oilfield on coiled tubing, and it finished 13 fishing jobs in ϕ88.9 mm production string. In total 2 851.87 m of ϕ38.1 mm coiled tubing that had been seriously stuck in the hole was retrieved, and the retrieval rate was up to 100%, while the fishing efficiency was four times higher than that of the conventional fishing string. The field application also verified the stability of tool’s performance. Studies suggested that this coiled tubing fishing tool could also be effectively applied in coiled tubing fishing, and it could provide technical references in the future for fishing in coiled tubing.

  • 随着我国油气资源的勘探开发向深层、超深层发展,开展超深井复杂地层钻井技术研究,成为钻井面临的迫切任务[15]。近年来,随着我国钻井装备和配套工艺、技术的不断进步,钻深能力得到逐步提高,深井、超深井数量快速增长,但超深井钻井过程中面临的裸眼段长、高低压并存、地质条件复杂等问题尚未得到有效解决[67]。川深1井是部署在四川盆地川中地区的一口重点勘探井,设计井深8 690.00 m,实钻井深8 420.00 m。储层埋藏超深,气藏具有高温、高压、高含H2S的“三高”特征,钻井过程中存在井眼失稳、卡钻、H2S气侵和钻遇高压气层等复杂情况,导致机械钻速低、井下安全风险高、钻井周期长和钻井成本高等工程问题。为此,结合工程地质特征,应用了系列钻井提速技术——优化应用泡沫钻井技术、气体钻井技术、“孕镶金刚石钻头+高速螺杆钻具”复合钻井技术、预弯曲动力学防斜打快技术等关键技术[8],有效解决了该井钻井过程中遇到的各种钻井难题,实现了安全、快速钻井,也为该类超深井钻井提速积累了技术经验。

    川深1井自上而下依次钻遇侏罗系蓬莱镇组、遂宁组、沙溪庙组、千佛崖组、自流井组,三叠系须家河组、小塘子组、雷口坡组、嘉陵江组、飞仙关组,二叠系长兴组、吴家坪组、茅口组、栖霞组、梁山组,志留系龙马溪组,奥陶系五峰组、宝塔组、湄潭组,寒武系洗象池群组、陡坡寺组、龙王庙组、沧浪铺组、仙女洞组、筇竹寺组,震旦系灯影组。

    受沉积环境影响,川深1井钻遇地层岩性复杂,陆相地层厚度达4 100.00 m,主要为砂泥岩频繁互层,泥页岩厚度大,泥页岩厚度占陆相地层厚度的50%左右。海相地层膏盐岩发育,深部地层井温高达190 ℃。沙溪庙组至自流井组地层含多套含气层。须家河组、小塘子组含石英砂岩,砂岩中石英含量高,其中须家河砂岩中平均石英含量达75%以上,须家河三段煤层发育。嘉陵江组膏盐岩发育,平均厚度占比达50%~70%,盐岩溶解性好。雷口坡组至长兴组主要为灰岩,含有泥页岩互层。龙马溪组存在大段泥岩,极易水化分散。洗象池群组至龙王庙组地层主要为泥岩和白云岩,岩石强度整体较高,具有很强的研磨性。储层灯影组地层岩性主要为灰岩、白云岩,岩石含溶孔、溶洞,胶结性差,地层破碎。

    川深1井采用五开井身结构,其实钻井身结构如图1所示。该井钻井中存在如下难点:

    图  1  川深1井实钻井身结构
    Figure  1.  Casing program of Well Chuanshen-1

    1)一开为ϕ660.4 mm井眼,一开井段较元坝地区类似井深200 m左右。大尺寸井眼应用泡沫钻井时井眼稳定和携砂性能要求高。该段蓬莱镇组地层泥质含量高,易造浆,影响泡沫钻井的井眼稳定,施工难度大[9]。邻井星1井一开采用泡沫钻井,发生井眼失稳卡钻;元坝10–3井一开采用泡沫钻至井深703.00 m,井底大段沉砂,下钻遇阻,划眼时间长。

    2)二开为ϕ444.5 mm井眼,钻穿遂宁组—雷口坡组四段。大尺寸井眼需要破岩功率大,但常规钻井方式钻进须家河组和小塘子组等高研磨性地层时破岩效率非常低,如马深1井ϕ444.5 mm井段在上述地层平均机械钻速不到2.00 m/h。另外,自流井组地层含砾石,须家河组、小塘子组地层石英含量高、胶结致密,研磨性强、可钻性差,大尺寸条件下钻进效率更低。如马深1井ϕ444.5 mm井段自流井组和须家河组地层采用“牙轮/混合钻头+常规钻井技术”,平均机械钻速仅0.68 m/h,平均单只钻头进尺仅36.50 m;马深1井ϕ406.4 mm井段须家河组地层采用“牙轮钻头+常规钻井技术”和“孕镶金刚石钻头+高速螺杆钻具”钻进时,平均机械钻速仅0.76 m/h,平均单只钻头进尺仅34.40 m。

    3)超深井井下情况复杂,提速工具的应用受到一定限制(部分提速技术的应用尚在试验阶段),采用常规钻井方式时机械钻速低。如马深1井在长兴组底部地层以下主要采用“牙轮/PDC钻头+常规钻井技术”,平均机械钻速仅1.15 m/h,单只钻头平均进尺仅50.74 m。

    4)侏罗系地层以泥岩、泥质粉砂岩等厚互层为主,含砾石,极易损坏PDC钻头。三叠系—二叠系地层岩性复杂,须家河组岩石抗压强度为160 MPa,可钻性级值5~8(见表1)。长兴组底部以下地层硅质含量高,含燧石,地层硬度大,研磨性强;小塘子组岩石抗压强度达到192 MPa,且细粒岩屑砂岩、石英粉砂岩研磨性强,机械钻速只有0.50 m/h;飞仙关组至梁山组抗压强度在200 MPa左右;吴家坪组抗压强度较高,接近250 MPa,可钻性差,导致机械钻速慢且钻头磨损快,钻头选型困难。

    表  1  川深1井所在区块岩心试验结果
    Table  1.  Core test results of the block of Well Chuanshen-1
    地层 井深/m 岩性 可钻性级值 抗压强度/
    MPa
    抗拉强度/
    MPa
    牙轮
    钻头
    PDC
    钻头
    侏罗系 2 818.00 长石砂岩 5.13 3.60 135 4.3
    三叠系 4 079.00 岩屑砂岩 7.59 6.83 190 9.1
    二叠系 6 787.00 硅质灰岩 8.19 7.98 250 9.8
    志留—
    奥陶系
    7 230.00 泥质灰岩 5.15 4.22 120 5.4
    寒武系 8 422.00 白云岩 7.84 7.89 265 9.5
    下载: 导出CSV 
    | 显示表格

    5)超深井直井段井斜角控制困难,钻井工艺选择难度大。地层泥岩、粉砂质泥岩、砂岩互层频繁,软硬交错,控制井斜角的难度很大;轻压吊打钻井速度慢,周期长。如马深1井四开钻至井深6 420.00 m时,最大井斜角达到7.73°。

    川深1井一开ϕ660.4 mm井段,蓬莱镇组和遂宁组地层易出水,空气、雾化钻井应用受限:使用常规钻井液钻井时,速度慢,携砂困难,容易卡钻;常规泡沫钻井液体系抑制性不足,容易发生井壁坍塌,引起井下复杂情况[912]

    针对上述问题,研发了耐温、抗盐发泡剂,形成了泡沫钻井液体系:清水+0.5%抑制性发泡剂+2.6%小分子稳泡剂+0.5%聚丙烯酰胺,其发泡体积可达400 mL以上,半衰期可达90 min以上。

    该井段应用的钻具组合为:ϕ660.4 mm SKG515CGK牙轮钻头+浮阀+ϕ279.4 mm钻铤3根+ϕ241.3 mm螺旋钻铤6根+ϕ203.2 mm螺旋钻铤9根+ϕ139.7 mm钻杆。根据环空最低返速不低于0.5 m/s、环空岩屑浓度小于4%、井口压力为3~5 MPa等安全限定条件,设计了泡沫钻井参数:推荐气量180~200 m3/min,推荐液量12~15 m3/min。

    根据莫尔–库仑准则和围压下井底岩石可钻性模型,计算蓬莱镇组—自流井组气体钻井时岩石的黏聚力,对该井气体钻井的井眼稳定性风险进行评价,从而确定适合气体钻井的井段。计算发现:900.00~2 500.00 m井段岩石黏聚力理论计算值普遍高于气体钻井黏聚力临界值,原始地层坍塌密度普遍低于气体钻井临界坍塌密度,气体钻井时井壁较为稳定,具备实施气体钻井的条件。根据研究成果,二开上部地层应用气体钻井技术,钻具组合为ϕ444.5 mm牙轮钻头+浮阀+ϕ279.4 mm钻铤3根+ϕ241.3 mm螺旋钻铤6根+ϕ203.2 mm无磁钻铤1根+ϕ203.2 mm螺旋钻铤8根+ϕ139.7 mm钻杆,主要钻井参数见表2

    表  2  川深1井气体钻井参数设计
    Table  2.  Parameters design of gas drilling in Well Chuanshen–1
    井段/m 钻头外径/mm 注气量/(m3·min–1 注气压力/MPa 钻压/kN 转速/(r·min–1
    910.00~2 100.00 444.5 160~175 1.5~2.0 80~140 60~70
    2 100.00~2 318.10 175~210 2.0~3.0 140~180
    下载: 导出CSV 
    | 显示表格

    旋冲钻井技术能够提高硬地层的钻压传递效率,硬地层岩石在旋冲作用下更容易发生脆性破碎,能够改善钻齿的受力状态,更好地保护切削齿,提高钻进效率[1315]。借鉴川东北地区深井钻井经验,采用“高效PDC钻头+旋冲工具”进行提速,在下沙溪庙组、千佛崖组及自流井组马鞍山段采用“PDC钻头+旋冲工具”钻进。旋冲工具的冲程为3~13 mm,冲击频率为马达转速的3~4倍,最大排量为75 L/s,作业寿命长达150 h,能够满足大排量和长寿命的技术要求。同时,根据地层岩性设计了配套KS1662DGR型高效PDC钻头,该钻头具有以下特点:深内锥结构,可提高稳定性;大后倾角,可提高抗冲击能力;主刀翼双排切削结构;内锥、鼻部设计有环形减震带,可提高钻头的抗冲击能力;采用高耐磨复合片。

    川东北地区高压强研磨性地层使用“进口孕镶金刚石钻头+高速涡轮钻具”钻进,取得了一定的提速效果,但综合成本较高。目前国内高速螺杆钻具日渐成熟,且经济优势明显,因此建议采用“国产孕镶金刚石钻头+高速螺杆钻具”钻井提速技术。高速螺杆能够为钻头提供恒定的转速和钻压,可使钻头连续接触井底切削岩石,且能保持足够的扭矩。通过分析对比,选择了最高转速可达250 r/min、输出扭矩大于4 kN·m的高速螺杆,可以满足川深1井高压硬地层钻进的需要。孕镶金刚石钻头局部设计有楔形切削齿,可在硬地层中提高破岩效率;后排采用了齿形致密孕镶块,可保护前排齿、延长钻头使用寿命(见图2)。

    图  2  孕镶金刚石钻头示意
    Figure  2.  Schematic diagram of the PDC bit

    预弯曲动力学防斜打快技术可实现滑动导向钻进与旋转钻进的结合,可采用高于钟摆极限钻压50%以上的钻压值,从而有效提高机械钻速[1617]。该技术一方面通过钻具组合的变形和动力学行为给钻头提供较大的降斜力;另一方面通过预弯曲设置使钻具组合按合适的弯曲形状进行变形,最终使钻头偏向造成的侧向力合力尽可能达到最小。当钻头上的降斜力超过地层增斜力时,达到降斜目的。为进一步提高机械钻速,对钻具组合中上稳定器位置及钻进参数进行了优化设计。

    对于预弯曲动力学钻具组合而言,上稳定器的位置对钻具组合的防斜能力影响很大。稳定器在不同位置对钻头侧向力的影响如图3所示。

    图  3  稳定器位置与钻头侧向力关系曲线
    Figure  3.  The relationship curve between the position of centralizer and bit lateral force

    图3可以看出,随着上稳定器与螺杆钻具顶部的距离增加,钻具降斜力减小,因此在使用弯螺杆钻具复合钻进技术防斜打直时,可在单弯螺杆上部直接连接稳定器,或者连接1根3~5 m的短钻铤,以对螺杆钻具起到一定的保护作用。

    预弯曲动力学钻具组合优化结果:ϕ320.7 mm PDC钻头×0.43 m+ϕ215.9 mm×1.0°单弯螺杆钻具+ϕ203.2 mm短钻铤×3.01 m+ϕ318.0 mm稳定器×1.55 m+ϕ203.2 mm无磁钻铤1根+ϕ203.2 mm钻铤6根+随钻震击器+ϕ203.2 mm钻铤1根+ϕ139.7 mm加重钻杆15根+ϕ139.7 mm钻杆+ϕ149.2 mm钻杆。

    复合钻进钻头在不同钻压下的侧向力如图4所示。

    图  4  钻压与钻头侧向力的关系曲线
    Figure  4.  The relationship curve between the WOB and bit lateral force

    图4可以看出,随着钻压增大,钟摆钻具组合的降斜力逐渐减小,而单弯螺杆钻具的复合降斜力却随之增大,且远大于钟摆钻具组合的降斜力,这说明预弯曲动力学防斜降斜技术比钟摆钻具更有利于释放钻井参数,防斜打快效果更好。

    川深1井所在区块邻区雷口坡组—长兴组地层采用ϕ13.0 mm切削齿六刀翼PDC钻头钻进时,机械钻速低。因此,研制了ϕ19.0 mm主切削齿、ϕ16.0 mm副切削齿复合片的KM1652ADGR五刀翼PDC钻头,配合预弯曲钻具组合钻进。预弯曲动力学钻具复合钻井参数为:钻压80~120 kN,顶驱转速50 r/min,排量42 L/s,泵压22~24 MPa。

    川深1井超深井钻井提速关键技术的应用,很好地解决了该井钻遇的各种钻井难题,减少了井下故障,提高了机械钻速。同时,该井大量采用了国产钻具,缩短了起下钻时间,减少了钻头使用量,取得了很好的经济效益。

    一开ϕ660.4 mm井眼,20.00~910.00 m井段采用空气泡沫钻井技术,未发生井下故障,平均机械钻速5.67 m/h,较设计值提高3.1%,与常规钻井相比,机械钻速提高4倍以上,提速效果很好。

    二开910.00~2 318.10 m井段采用气体钻井技术3趟钻完成,平均机械钻速10.63 m/h,提速效果显著;2 318.10~2 909.30 m井段采用旋冲钻井技术,平均机械钻速2.11 m/h,较阆中1井同层位采用牙轮钻头的钻速提高了129.35%,较马深1井采用“进口PDC钻头+螺杆钻具”的钻速提高17.22%,提速提效显著。

    三开ϕ320.7 mm井眼4 548.86~6 248.50 m井段为雷口坡组三段—长兴组地层,采用预弯曲动力学防斜打快技术,平均机械钻速4.06 m/h(见表3),较设计的三开钻速提高了114.4%,较邻区块类似井机械钻速提高了120.0%,提速效果明显。

    表  3  预弯曲动力学防斜打快技术钻井技术指标
    Table  3.  Technical indicators of the pre-bending dynamics deviation control
    开次 井眼/mm 钻头型号 钻进地层 钻进井段/m 进尺/m 机械钻速/(m·h–1
    三开 320.7 KM1652ADGR 雷口坡组—嘉陵江组 4 548.86~5 295.50 746.64 4.17
    三开 320.7 KS1952DGR 嘉陵江组 5 295.50~5 782.25 486.75 3.79
    三开 320.7 KM1652ADGR 嘉陵江组—长兴组 5 782.25~6 248.50 466.25 4.20
    四开 241.3 KS1653DGR 栖霞组—洗象池群组 6 885.00~7 359.11 474.11 4.09
    下载: 导出CSV 
    | 显示表格

    四开ϕ241.3 mm井眼6 885.00~7 359.11 m井段为栖霞组—洗象池群组地层,采用预弯曲动力学防斜打快技术,钻至井深7 228.40 m后为取心卡层控时钻进,平均机械钻速达到4.09 m/h(见表3),较马深1井同层位机械钻速提高31.51%。在实钻过程中配合应用MWD,起到了很好的防斜效果,最大井斜角仅为0.79°,与邻区马深1井对应层段的最大井斜角5.74°相比,防斜打直效果明显。

    四开ϕ241.3 mm井眼7 359.11~7 506.00 m井段为陡坡寺组地层,采用“PDC钻头+国产旋冲螺杆钻具”技术,平均机械钻速2.41 m/h,较马深1井陡坡寺组机械钻速提高了161.96%,并减少6趟起下钻、少用6只钻头。7 518.27~7 625.00 m井段(沧浪铺组地层)采用“孕镶金刚石钻头+高速长寿命螺杆钻具”,平均机械钻速0.67 m/h,单只钻头进尺是马深1井的3.3倍,大幅度减少了起下钻时间。

    1)针对超深井上部井段原始地层坍塌密度低于气体钻井临界坍塌密度的工况,采用气体钻井和泡沫钻井技术,可大幅提高机械钻速。针对超深井常规泡沫钻井液体系存在抑制性不足、易造成井眼坍塌引起井下复杂情况的问题,研制了抑制泥岩水化膨胀的泡沫钻井液体系。

    2)针对超深井深部地层破岩时效低的问题,采用了旋冲钻井技术和“孕镶金刚石钻头+高速螺杆钻具”复合钻井技术,并选用了高转速螺杆钻具,输出扭矩大于4 kN·m,能满足硬地层钻进需要,在孕镶金刚石钻头局部设计楔形切削齿、后排用齿形致密孕镶块,可延长钻头使用寿命。

    3)对于预弯曲动力防斜打快技术,通过优化设计钻进参数,可实现滑动导向钻进与旋转钻进相结合;采用高于钟摆极限钻压50%以上的钻压值,配套高效PDC钻头为核心的深部难钻地层钻井技术,可有效提高机械钻速,保证井身质量。

    4)井下储层的位置、产量大小难以准确预知,还有井下异常高温源的温度、位置以及各井可燃气体的成分,目前都不能进行准确预测,建议就这方面的问题进行科研攻关。

  • 图  1   专用打捞工具的结构

    Figure  1.   Structure of fishing tool

    图  2   旋转引入机构结构示意

    Figure  2.   Schematic of the rotary guiding mechanism

    图  3   鱼顶抓获机构示意

    Figure  3.   Schematic of fish top capturing mechanism

    图  4   鱼顶引入检测机构示意

    Figure  4.   Schematic of fish top detection mechanism

    图  5   落鱼剪切机构示意

    Figure  5.   Schematic of fish shearing mechanism

    图  6   剪切机构球座薄弱点处结构参数

    Figure  6.   Structural parameters of the weak point of the shearing ball seat

    图  7   抓获机构主要部件网格划分

    Figure  7.   Meshing of the main components of the capturing mechanism

    图  8   打捞卡瓦和连续油管的应力云图

    Figure  8.   Stress cloud diagram of fishing slip and coiled tubing

    图  9   剪切机构主要部件网格划分示意

    Figure  9.   Schematic of the meshing of the main components of shearing mechanism

    图  10   剪切卡瓦和连续油管应力云图

    Figure  10.   Stress cloud diagram of shear slip and coiled tubing

    图  11   鱼顶引入试验示意

    Figure  11.   Schematic of the fish top guiding test

    图  12   鱼顶引入试验载荷曲线

    Figure  12.   Load curves of fish top guide test

    图  13   鱼顶检测试验泵压曲线

    Figure  13.   Pumping pressure curves of fish top detection test

    图  14   卡瓦抓持及剪切试验示意

    Figure  14.   Schematic of slip engaging and shearing test

    图  15   抓获及剪切试验曲线

    Figure  15.   Curves of capturing and shearing test

    图  16   X–1井的井身结构

    Figure  16.   Casing program of Well X–1

    图  17   历次打捞落鱼断口载荷及捞获情况曲线

    Figure  17.   Curves of the breakage load and retrieval of previous fishing jobs

  • [1] 肖磊,杨博仲,李永杰. HT区块超深含硫井压回法压井技术应用研究[J]. 钻采工艺, 2018, 41(6): 16–18. doi: 10.3969/J.ISSN.1006-768X.2018.06.05

    XIAO Lei, YANG Bozhong, LI Yongjie. Application of bullheading killing technology at HT Area[J]. Drilling & Production Technology, 2018, 41(6): 16–18. doi: 10.3969/J.ISSN.1006-768X.2018.06.05

    [2] 牛新明,张进双,周号博. " 三超”油气井井控技术难点及对策[J]. 石油钻探技术, 2017, 45(4): 1–7.

    NIU Xinming, ZHANG Jinshuang, ZHOU Haobo. Technological challenges and countermeasures in well control of ultra-deep, ultra-high temperature and ultra-high pressure oil and gas wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 1–7.

    [3] 邹先雄,石孝至,董守涛. 打捞连续油管落鱼工艺技术研究与应用[J]. 钻采工艺, 2018, 41(5): 16–18, 22. doi: 10.3969/J.ISSN.1006-768X.2018.05.05

    ZOU Xianxiong, SHI Xiaozhi, DONG shoutao. Study on how to fish coiled tubing and application[J]. Drilling & Production Technology, 2018, 41(5): 16–18, 22. doi: 10.3969/J.ISSN.1006-768X.2018.05.05

    [4] 曹学军,周赟,傅伟,等. 连续油管带压作业技术在特殊复杂井况中的应用[J]. 天然气勘探与开发, 2012, 35(2): 50–52, 56. doi: 10.3969/j.issn.1673-3177.2012.02.014

    CAO Xuejun, ZHOU Yun, FU Wei, et al. Application of pressure operation technology of coiled tubing in special complex well condition[J]. Natural Gas Exploration and Development, 2012, 35(2): 50–52, 56. doi: 10.3969/j.issn.1673-3177.2012.02.014

    [5] 王伟佳,熊江勇,张国锋,等. 页岩气井连续油管辅助压裂试气技术[J]. 石油钻探技术, 2015, 43(5): 88–93.

    WANG Weijia, XIONG Jiangyong, ZHANG Guofeng, et al. Auxiliary fracturing and testing of gas in shale gas well with coiled tubing[J]. Petroleum Drilling Techniques, 2015, 43(5): 88–93.

    [6] 窦益华,刘曼,郑杰,等. 新型双卡瓦可退式连续油管打捞工具的设计与有限元分析[J]. 机械制造, 2019, 54(1): 74–76, 80. doi: 10.3969/j.issn.1000-4998.2019.01.023

    DOU Yihua, LIU Man, ZHENG Jie, et al. Design and finite element analysis of new double-kava retractable fishing tool for continuous reeled tubing[J]. Machinery, 2019, 54(1): 74–76, 80. doi: 10.3969/j.issn.1000-4998.2019.01.023

    [7] 于东兵,包文德,马卫国,等. 连续油管打捞技术专用工具研究现状及展望[J]. 石油机械, 2007, 35(1): 45–47. doi: 10.3969/j.issn.1001-4578.2007.01.015

    YU Dongbing, BAO Wende, MA Weiguo, et al. Research status and expectation of special tools for coiled tubing fishing technology[J]. China Petroleum Machinery, 2007, 35(1): 45–47. doi: 10.3969/j.issn.1001-4578.2007.01.015

    [8] 石孝志,苏贵杰,王忠胜,等. 连续油管打捞技术在川渝地区的应用[J]. 天然气工业, 2008, 28(8): 58–60. doi: 10.3787/j.issn.1000-0976.2008.08.016

    SHI Xiaozhi, SU Guijie, WANG Zhongsheng, et al. Application of coiled tubing fishing technology in Sichuan and Chongqing Area[J]. Natural Gas Industry, 2008, 28(8): 58–60. doi: 10.3787/j.issn.1000-0976.2008.08.016

    [9] 吴永兴,朱培珂,熊伟. 连续油管打捞工艺在水平井的应用问题及措施[J]. 石油矿场机械, 2016, 45(7): 80–83. doi: 10.3969/j.issn.1001-3482.2016.07.018

    WU Yongxing, ZHU Peike, XIONG Wei. Coiled tubing fishing process application problems and measures in horizontal well[J]. Oil Field Equipment, 2016, 45(7): 80–83. doi: 10.3969/j.issn.1001-3482.2016.07.018

    [10] 王伟佳. 页岩气水平井连续油管带压打捞长电缆技术[J]. 石油钻探技术, 2018, 46(3): 109–113.

    WANG Weijia. The technology of long cable snubbing fishing through coiled tubing in horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2018, 46(3): 109–113.

    [11] 赵广慧,梁政. 连续油管力学性能研究进展[J]. 钻采工艺, 2008, 31(4): 97–101. doi: 10.3969/j.issn.1006-768X.2008.04.032

    ZHAO Guanghui, LIANG Zheng. Research on mechanical property of coiled tubing[J]. Drilling & Production Technology, 2008, 31(4): 97–101. doi: 10.3969/j.issn.1006-768X.2008.04.032

    [12] 刘健,林铁军,练章华,等. 考虑残余应变的连续油管螺旋屈曲载荷新公式[J]. 石油机械, 2008, 36(1): 25–28.

    LIU Jian, LIN Tiejun, LIAN Zhanghua, et al. A new calculating formula for helical buckling load of coiled tubing with residual strain[J]. China Petroleum Machinery, 2008, 36(1): 25–28.

    [13] 陈迎春,张仕民,王文明,等. 连续油管屈曲力学特性研究进展[J]. 石油矿场机械, 2013, 42(12): 15–20. doi: 10.3969/j.issn.1001-3482.2013.12.004

    CHEN Yingchun, ZHANG Shimin, WANG Wenming, et al. Study progress in buckling behavior of coiled tubing[J]. Oil Field Equipment, 2013, 42(12): 15–20. doi: 10.3969/j.issn.1001-3482.2013.12.004

  • 期刊类型引用(25)

    1. 宋东东,罗鑫,贺明敏. 万米特深井?812.8 mm PDC钻头研制及现场应用. 石油机械. 2025(02): 31-36 . 百度学术
    2. 范翔宇,蒙承,张千贵,马天寿,李柱正,王旭东,张惊喆,赵鹏斐,邓健,周桂全. 超深地层井壁失稳理论与控制技术研究进展. 天然气工业. 2024(01): 159-176 . 百度学术
    3. 肖军. 川南泸州区块页岩气钻井工程难点综述. 承德石油高等专科学校学报. 2024(01): 30-36 . 百度学术
    4. 赵阳,朱勇,高强,曹凯. 旋冲钻进系统控制策略研究现状与发展趋势. 机床与液压. 2024(04): 175-184 . 百度学术
    5. 许期聪,付强,周井红,陈宽,万夫磊. 四川盆地双鱼石区块特深井井身结构设计与适用性评价研究. 钻采工艺. 2024(02): 83-92 . 百度学术
    6. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 . 百度学术
    7. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 . 百度学术
    8. 高航献,李真祥,胡彦峰. 元深1井超深井钻井提速关键技术. 石油钻探技术. 2024(03): 28-33 . 本站查看
    9. 周忠鸣,陈军海,李丹丹,孙倩倩,贾延军,江嘉俊. 灯影组白云岩高温后单轴力学特性及本构模型研究. 钻探工程. 2024(06): 59-66 . 百度学术
    10. 崔海波. 深井底部钻具组合选型及防斜性能评价指标分析. 石油矿场机械. 2023(01): 9-14 . 百度学术
    11. 夏连彬,胡锡辉,李文哲,郭建华,沈欣宇,王秋彤,王晓娇,陈一丹. 蓬莱气区超深井钻井提速技术. 天然气勘探与开发. 2023(01): 91-96 . 百度学术
    12. 王博,赵春,陈显学. 双6储气库大尺寸注采井钻井技术. 石油钻采工艺. 2023(04): 410-417 . 百度学术
    13. 阳君奇,申彪,叶素桃,金伟,宋仁智,刘成龙,闵鹏,王全峰. 空气钻井在BZ24井的应用. 钻采工艺. 2022(03): 146-150 . 百度学术
    14. 司西强,王中华. 改性壳聚糖抗高温抗盐降滤失剂的研制. 应用化工. 2022(06): 1702-1704+1708 . 百度学术
    15. 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 . 百度学术
    16. 陈小元,严忠. 许X36A下扬子中深探井钻井施工技术. 复杂油气藏. 2021(01): 85-89+101 . 百度学术
    17. 张新亮,祁正玉,王晓强,侯越全. 川深1井非常规系列尾管悬挂器应用分析. 石油矿场机械. 2021(03): 57-61 . 百度学术
    18. 孙焕泉,周德华,赵培荣,李王鹏,冯动军,高波. 中国石化地质工程一体化发展方向. 油气藏评价与开发. 2021(03): 269-280 . 百度学术
    19. 娄尔标,周波,刘洪涛,陈锋,王文昌,薛艳鹏. 巨厚砾石层气体钻井井筒不规则性对井斜的影响研究. 石油钻探技术. 2021(03): 62-66 . 本站查看
    20. 张瑞,李夯,阮臣良. ?193.7 mm×?139.7 mm旋转尾管悬挂器的研制与应用. 石油机械. 2020(04): 9-15 . 百度学术
    21. 章景城,马立君,刘勇,文亮,张绪亮,严运康,全健. 塔里木油田超深井超小井眼定向钻井技术研究与应用. 特种油气藏. 2020(02): 164-168 . 百度学术
    22. 王剑飞. 粒子冲击钻头的研制与现场试验. 西部探矿工程. 2020(06): 113-116 . 百度学术
    23. 邢星,吴玉杰,张闯,荣光来,李阳洁. 超深水平井钻井水力参数优选. 断块油气田. 2020(03): 381-385 . 百度学术
    24. 马鸿彦,郑邦贤,陈景旺,郭劲松,宋晓健,李和清. 杨税务潜山超深超高温井安全优快钻井技术. 石油钻采工艺. 2020(05): 573-577 . 百度学术
    25. 吴虎子. 塔北区块超深碳酸盐高效钻井实施探讨. 中国石油和化工标准与质量. 2019(19): 153-154 . 百度学术

    其他类型引用(6)

图(17)
计量
  • 文章访问数:  1913
  • HTML全文浏览量:  584
  • PDF下载量:  109
  • 被引次数: 31
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-10-16
  • 网络出版日期:  2019-11-03
  • 刊出日期:  2019-10-31

目录

/

返回文章
返回