Research on the Changes in Formation Pressure Performance of CO2 Flooding in the Ultra-Low Permeability Oil Reservoir: Block Fan 142 of the Shengli Oilfield
-
摘要: 为了解胜利油田樊142块特低渗透油藏注CO2驱油时的油层压力动态和混相前缘推进特征,确定油藏中的相态和驱油效果,进行了储层压力动态变化研究。运用地质资料和生产资料分析、井下压力监测和油藏数值模拟相结合的方法,研究了该区块F142-7-X4井组自投产以来油层压力的变化规律以及注入CO2后油层的压力恢复特征。研究结果显示,依靠天然能量开采阶段地层压力衰减迅速;在关闭采油井注CO2压力恢复阶段,F142-7-X4井组中的F142-7-3井和F142-8-3井地层压力恢复缓慢,其余4口井地层压力恢复较快;实测与数值模拟的油层压力基本一致,可用模拟结果进行相关分析。基于模拟结果,结合油层剖面和平面上的最小混相压力前缘和CO2浓度前缘分析,明确了混相区的推进特征,建立了确定CO2混相区域的方法。研究表明,压力动态跟踪结果可为确定CO2注入量和开机时机提供可靠的依据,为判断CO2驱油相态和确定混相区域提供有效手段。Abstract: To study the dynamic changes during CO2 flooding in reservoir formations and to evaluate the progress of the miscible front in the oil reservoir in Block Fan 142 which possesses extremely low permeability,and to clarify phases and flooding performances in such reservoirs, dynamic changes in pressures were reviewed. Comprehensively using geologic data, production data, downhole pressure monitoring and reservoir numerical simulation techniques allowed the analysis of patterns in pressure changes and pressure build-up after CO2 injection in the Well ClusterF142-7-X4. Research results showed that formation pressures decreased quickly in stages with development by using natural energy. During pressure build-up with closed producers and injected CO2, the formation pressures in Well F142-7-3 and Well F142-8-3 of F142-7-X4 Cluster restored slowly, whereas pressures in the other the 4 wells was quickly restored. Considering analyses related to minimum miscible pressure front and CO2 concentration front both vertically and horizontally, the progres of miscible zones may be determined to establish the method to clarify the CO2 miscible zones. Research results demonstrate that the dynamic tracking of pressures might provide a reliable foundation to determine the volume and timing of CO2 injection. In addition, these results may provide effective ways to determine phases in CO2 flooding and to clarify boundaries of miscible regions.
-
深层钻井钻遇硬脆性泥页岩地质体时,井壁易发生坍塌、掉块,引起阻卡等井下复杂,严重时甚至导致井眼报废,而90%的井壁失稳问题都与硬脆性泥页岩地层有关,研究硬脆性泥页岩地层井壁稳定显得尤为重要[1-5]。硬脆性泥页岩地层井壁失稳不能彻底解决的根本原因在于2个方面:钻遇未知的地层和井壁围岩不同尺度不同阶段变形—破坏—失稳的发展过程难以定量描述。与传统砂泥岩相比,硬脆性泥页岩具有独特的矿物组成和微观结构,并耦合深层高温、高应力、高孔隙压力、钻井流体等复杂环境,导致深层硬脆性泥页岩地层井壁稳定性问题是一个涉及力学、化学多学科交叉和微观、细观及宏观跨尺度演化的复杂问题。针对力学化学耦合作用下泥页岩井壁稳定问题,国内外学者分别从微观、细观和宏观多尺度角度开展了大量研究工作,通过揭示钻井液与硬脆性泥页岩耦合微观机理、描述细观损伤及评价宏观强度劣化规律,构建钻井流体化学性能与岩石力学参数间的本质关系桥梁,建立井壁稳定预测理论和控制模型,以期有效控制泥页岩地层井壁失稳。笔者对深层硬脆性泥页岩力学化学耦合作用下井壁稳定问题的多尺度研究进行了梳理与总结,并从考虑化学效应的脆性断裂力学角度,提出了探索硬脆性泥页岩井壁稳定性问题的新思路。
1. 深层硬脆性泥页岩井壁失稳基本原理
随着深层及超深层油气资源的勘探开发,钻井过程中所遇到泥页岩地层的埋深更深。对于深层硬脆性泥页岩,由于其复杂的地质环境条件(高温、高压及高地应力等),与浅层水敏性泥页岩相比,其组构特征存在本质区别。深层硬脆性泥页岩脆性矿物含量高,黏土矿物以伊利石、伊/蒙混层和高岭石为主,内部层理和微裂纹十分发育,各向异性及非均质性特征明显。
当深层硬脆性泥页岩地层被钻开后,钻井流体侵入硬脆性泥页岩内部的微裂纹或弱结构面后,首先与微观尺度上流体内的水分子、活性成分、岩石矿物发生复杂的物理化学反应,影响矿物表面间的微观相互作用;同时,在耦合力学作用的影响下,细观尺度上微裂纹发生起裂、扩展乃至贯通,逐步导致宏观尺度上硬脆性泥页岩强度参数劣化及应力状态发生改变,最终影响硬脆性泥页岩井壁稳定状态,如图1所示。
2. 硬脆性泥页岩井壁稳定力学化学耦合研究进展
硬脆性泥页岩井壁力学化学耦合失稳呈现累进性和周期性特征,其本质是钻井液滤液进入地层,井壁围岩内部微裂缝在微观–细观–宏观尺度动态演化,是导致深层硬脆性泥页岩井壁失稳的关键诱因。控制深层硬脆性泥页岩井壁失稳,需要探究流体与硬脆性泥页岩矿物之间的微观作用机理,明确流体–岩石间的相互作用与硬脆性泥页岩内部缺陷的细观损伤演化乃至宏观强度劣化间的本质关系,量化描述流体–岩石间的相互作用对深层硬脆性泥页岩井壁稳定性的影响。
目前,国内外学者对于力学化学耦合作用下硬脆性泥页岩井壁失稳的研究主要分为3部分,即硬脆性泥页岩水化微观作用机理揭示、细观结构损伤表征、宏观强度劣化效应描述及井筒稳定性预测分析。
2.1 微观尺度(作用机理)
当钻井流体侵入泥页岩地层后,流体内的水分子和活性粒子与泥页岩黏土矿物间的微观相互作用,是诱使泥页岩细观结构损伤、宏观强度劣化乃至井壁失稳复杂情况发生的主要影响因素。从微观层面探究不同流体与泥页岩不同黏土矿物间的作用机制,对于明确流体–岩石相互作用下井壁失稳机理,进而合理调控流体性能(优选作用效果更好的抑制剂及合理的加量)维持井壁稳定具有十分重要的意义。
分子模拟技术可以从分子尺度直观描述流体内水分子和活性粒子在黏土矿物晶层内的微观形态及分布特征(如图2所示),表征流体作用下泥页岩黏土矿物晶体结构及微观力学性质的变化,是揭示流体作用下泥页岩强度劣化微观动力学机制的有效手段。目前,国内外相关学者已利用分子模拟技术,研究了不同因素影响下黏土矿物的水化特征(黏土矿物晶体结构及微观力学性质的变化),包括作用流体组分及浓度、外部环境条件(温度和压力)和黏土矿物晶层结构特征(晶层表面电荷密度及电荷分布特征)。
2.1.1 流体组分及浓度对黏土矿物微观水化特征的影响
N. T. Skipper等人[7]利用蒙特卡洛分子模拟方法研究了2∶1型黏土矿物层间域内水分子对于Na-蒙脱石和Mg-蒙脱石层间膨胀性能的影响。E. S. Boek等人[8]在Skipper等人研究的基础上,利用蒙特卡洛模拟方法研究了蒙脱石层间域内Li+、Na+和K+等3种离子的水化特性,从微观层面解释了Na-蒙脱石和Li-蒙脱石比K-蒙脱石宏观水化膨胀更明显的原因。F. R. C. Chang等人[9-11]利用蒙特卡洛和分子动力学模拟相结合的方法,研究了不同水化程度条件下蒙脱石层间域内水分子、K+、Li+和Na+的分布特征及扩散性能。徐加放等人[12]利用分子力学和分子动力学模拟,研究了不同水化程度条件下Na-蒙脱石的层间距和体积的变化。D. A. Young等人[13]利用分子动力学模拟方法,通过研究蒙脱石层间域内Cs+、Na+和Sr2+等3种离子的水化特性,认为黏土矿物层间域内离子尺寸和离子所带电荷会影响黏土矿物的水化膨胀行为。王进等人[14]利用分子力学和分子动力学模拟方法,通过分析不同含水量条件下蒙脱石层间K+和水分子的动力学特征(层间扩散能力),揭示了K+对蒙脱石水化膨胀的抑制作用机理。K. Yotsuji等人[15]研究了单价阳离子(Cs+、Na+和K+)和双价阳离子(Ca2+和Sr2+)对蒙脱石晶体膨胀特性的影响及其作用机理。B. Akinwunmi等人[16]研究了不同浓度NaCl和CaCl2混合溶液对于Na-蒙脱石微观水化膨胀行为的影响。除了关注层间金属阳离子对蒙脱石水化膨胀行为的影响机理,也有不少学者利用分子模拟方法,去探究层间非金属阳离子(如NH4+)乃至有机类抑制剂抑制蒙脱石水化膨胀的机理[17-21]。
蒙脱石的水化作用不仅会导致其微观晶体结构发生变化,也会导致矿物微观力学参数发生变化。徐加放等人[22]利用分子动力学模拟方法,研究了蒙脱石的水化特性和无机盐(NaCl、KCl、NH4Cl、MgCl2和CaCl2)种类及其质量分数对矿物晶体弹性力学参数(弹性模量、泊松比、体积弹性模量和切变模量)的影响,尝试从微观角度实现井壁稳定化学和力学的耦合研究。黄小娟等人[17]研究了甲酰胺和尿素等小分子有机胺类抑制剂对蒙脱石水化的抑制作用机理,分析了有机胺类抑制剂种类及其质量分数对Na-蒙脱石弹性力学性能的影响。Han Zongfang等人[23]在进行分子动力学模拟时,选用CLAYFF力场模型,研究了Na-蒙脱石晶体在无机盐溶液作用下其弹性力学性能的变化。
蒙脱石是水敏性泥页岩中的主要黏土矿物,但是对硬脆性泥页岩而言,蒙脱石的含量往往比较少甚至没有,其黏土矿物主要以伊利石、高岭石和伊/蒙混层为主。因此,很多学者也逐渐开始从微观角度关注流体作用下伊利石、高岭石和伊/蒙混层的水化特性。V. S. Drits等人[24]在分析伊/蒙混层时,发现了伊利石的顺式(1M-tv)和反式(1M-cv)结构,给出了化学式及分子晶胞数据。王冠等人[25]利用蒙特卡洛和分子力学模拟方法,模拟了1M-cv和1M-tv 2种结构伊利石的水分子吸附,分析了伊利石的水化机理及膨胀特性,发现伊利石水化膨胀并不明显。刘勇等人[26]利用分子动力学模拟方法,研究了常温条件下伊利石的水化性能,发现水化初期伊利石层间距增大,随着吸附水分子数量增多,伊利石吸水饱和,不再进行膨胀。刘梅全等人[27]针对伊/蒙混层水化导致的井壁失稳问题,利用分子动力学模拟方法,着重研究了伊利石的水化机理和无机盐(NaCl、KCl、NH4Cl、CaCl2、MgCl2、AlCl3及FeCl3)对伊利石水化膨胀特性及晶体力学性能的影响,指出KCl和CaCl2溶液对伊利石的水化膨胀具有良好的抑制性。M. Ghasemi等人[28]利用分子动力学模拟方法,探究了不同含水量条件下伊/蒙混层的水化膨胀行为。Chen Jun等人[29]利用密度泛理论和分子动力学模拟相结合的方法,分析了高岭石表面的水化机理,指出水分子在高岭石层间的吸附主要依靠氢键的作用。Chen Zhongcun等人[30]利用经典分子动力学模拟方法,研究了流体浓度对于Cs+离子在高岭石层间域内的吸附和扩散行为。Chang Ming等人[31]对不同浓度金属阳离子(Na+、Mg2+及Al3+)在高岭石表面的吸附行为进行了分子动力模拟,指出高岭石的水化强度与层间阳离子的化合价和浓度相关。
2.1.2 外部环境条件对黏土矿物微观水化特征的影响
深层硬脆性泥页岩的埋藏深度更深,对应环境温度和压力也会增高。复杂温度压力环境下黏土矿物的水化作用,也是影响硬脆性泥页岩井壁稳定性的重要因素之一。Y. Zheng等人[32]利用分子动力学模拟方法,研究了不同温度(260~400 K)条件下水分子和单价阳离子(Li+、Na+、K+、Rb+和Cs+)在蒙脱石层间域内的扩散行,认为环境温度升高会使水分子和阳离子在层间域内的扩散能力增强。M. Camara等人[33]利用分子动力学模拟法分析了高温(200~600 K)、高压(6 GPa)条件下Na-蒙脱石经无机盐溶液作用后的水化行为,认为温度升高会使蒙脱石层间水分子和阳离子的流动能力增强,从而加剧蒙脱石的水化膨胀。刘勇等人[26]利用分子动力学模拟方法,研究了常温(298 K)与低温(243 K)下伊利石的水化性能。张亚云等人[6,34]开展了不同温度压力条件下蒙脱石水化过程的分子动力学模拟(温度25~250 ℃,压力0.1~90.0 MPa),分析了温度、压力对蒙脱石水化后晶体力学参数的影响规律,认为温度升高会使岩石强度参数的劣化加剧,压力升高会降低黏土水化导致强度参数劣化的效应。
2.1.3 晶层结构特征对黏土矿物微观水化特征的影响
黏土矿物的水化作用不仅与流体的组分及浓度和外部环境有关,也与黏土矿物同晶置换作用所导致的不同晶层电荷密度及晶层电荷分布相关。况联飞等人[35]在进行钠蒙脱石晶层间水分子结构分子动力学模拟时发现,层间补偿阳离子的吸附受蒙脱矿物同晶置换位置的影响,即蒙脱土的水化作用与晶层电荷分布相关。Peng Chenliang等人[20,36]利用分子动力学模拟方法,研究了矿物晶层电荷密度和分布位置对NH4+-蒙脱石水化膨胀行为的影响,认为晶层电荷密度越大,蒙脱石水化膨胀程度越小。M. Ghasemi等人[28]研究了伊利石或蒙脱石矿物晶层电荷密度和分布位置对伊/蒙混层水化膨胀行为的影响。
综上可知,对于不同影响因素下泥页岩黏土矿物的水化特性及作用机理,虽然国内外学者基于分子模拟手段,从微观层面开展了较为全面的研究,但并没有建立流体–岩石间的微观相互作用与硬脆性泥页岩微缺陷的细观损伤及宏观强度劣化间的内在关系桥梁,无法量化描述流体与泥页岩间物理化学作用对于宏观尺度泥页岩井壁稳定性的影响。
2.2 细观尺度(损伤描述)
由于深层硬脆性泥页岩自身微裂纹发育,钻井流体极易侵入泥页岩内部并与其发生相互作用,诱发硬脆性泥页岩内部微裂纹起裂扩展,进而导致硬脆性泥页岩宏观强度劣化及井壁失稳。国内外学者利用各种先进的无损探伤实验技术手段(CT扫描成像法、环境扫描电镜观察法、超声波透射法和核磁共振法),对流体作用下硬脆性泥页岩微裂纹的起裂扩展行为进行了描述与表征,尝试探索流体作用下硬脆性泥页岩内部细观结构损伤与宏观力学行为的内在相互关系。
1)CT扫描成像法。石秉忠等人[37-38]采用CT成像数字岩心分析设备,分析了川西地区须家河组三段硬脆性泥页岩水化过程中微裂纹的演变过程(萌生、扩展、分叉、归并、重分叉、再扩展、贯通、宏观破坏),认为自吸水化作用下微裂纹的扩展是导致硬脆性泥页岩微观结构变化直至宏观破坏的主要原因之一。马天寿等人[39]以威远气田龙马溪组硬脆性页岩为研究对象,利用CT扫描成像法,分析了不同水化阶段下硬脆性页岩内微裂隙的演化情况,并以水化过程中页岩内衍生的微裂隙面积为损伤变量,提出了页岩水化细观损伤特性定量评价方法,定量描述了水化过程中页岩损伤变量与浸泡时间的关系。林永学等人[40]利用CT扫描成像法,研究了龙马溪组页岩在不同流体相同浸泡时间下微观结构的变化情况,认为流体侵入页岩后在前期就会诱发新裂纹起裂扩展,页岩经不同流体浸泡内部变化具有明显的差异。Zhang Shifeng等人[41]将CT扫描成像法与数字图像处理技术结合,描述了不同水化作用时间、不同空间位置下Mancos页岩细观结构损伤情况,并通过三维裂缝面重构,详细分析了页岩水化裂纹演化过程。贾利春等人[42]基于CT扫描成像研究了龙马溪组页岩水化细观结构损伤演化规律,利用损伤面积和分形维数定量描述了页岩水化损伤程度和裂纹扩展的复杂程度。高书阳等人[43]认为滚动回收、线性膨胀等常规试验方法不能有效评价不同钻井液条件下龙马溪组页岩井壁的稳定性,提出利用CT层析成像技术表征裂缝扩展的方法来评价页岩经流体作用后的水化特征。对于压裂液作用下硬脆性页岩细观结构的变化情况,也有不少学者利用CT扫描成像法进行了描述与探究。Wang Qing等人[44]利用CT扫描成像法,分析了不同围压条件下龙马溪组页岩在压裂液作用前后微裂纹的演化情况(见图3)。王良等人[45-46]利用CT扫描成像法,描述了长宁区块硬脆性页岩在压裂液作用后的细观结构,分析了不同自吸时间下页岩裂缝起裂扩展的情况。
2)扫描电镜观察法。朱宝龙等人[47]利用扫描电镜观察法研究了水井沱组黑色页岩水化膨胀的微观特征。刘敬平等人[48]通过扫描电镜观察云南昭通108区块龙马溪组页岩水化前后的情况,发现硬脆性页岩经水浸泡后孔、缝明显增多。刘向君等人[49-51]以多个地区的龙马溪组硬脆性页岩为研究对象,利用扫描电镜观察了页岩不同水化时间下微观结构的变化过程。卢运虎等人[52-53]利用热场发射环境扫描电子显微镜,系统探究了不同温度、压力和浸泡时间下龙马溪组硬脆性页岩平行层理和垂直层理面微观结构的变化特征(如图4所示),指出龙马溪组页岩细观尺度的各向异性引起的页岩水化特征存在明显区别;另外,环境温度升高,会使页岩细观结构的水化损伤加剧。薛华庆等人[54]利用场发射扫描电镜,描述了水化作用对硬脆性页岩无机矿物和有机质微观结构的影响。隋微波等人[55]以四川彭水、自贡及涪陵和长庆地区硬脆性页岩为研究对象,利用场发射扫描电镜对页岩水化前后的微观结构进行了定点观测,研究了黏土矿物类型及含量、有机质发育程度和平行及垂直层理差异性对页岩水化后微观结构变化的影响。
3)超声波透射法。吴小林等人[56]率先利用超声波透射法探索了泥页岩的水化过程。王光兵等人[57]以鄂尔多斯盆地井下石盒子组硬脆性页岩为研究对象,基于超声波透射法,利用声波时差和衰减系数描述了页岩水化动态变化的过程,利用时域信号及频域信号,定性分析了页岩水化结构的变化特征。
4)核磁共振法。王萍等人[58]利用核磁共振法测试不同浸泡时间下的硬脆性泥页岩试样,根据不同浸泡时间试样的横向弛豫时间T2谱分布及核磁共振成像,研究了水化对页岩结构的损伤。钱斌等人[59]利用核磁共振和CT扫描成像相结合的技术手段,研究了水化作用对页岩孔、缝结构的影响。Wang Ping等人[60-61]基于核磁共振T2谱分布,建立了页岩水化损伤变量模型,形成了利用核磁共振技术定量评价水化作用下页岩结构损伤程度的方法。
除了利用无损检测方法对硬脆性泥页岩水化细观结构损伤程度进行描述和表征外,也有学者尝试定量描述硬脆性泥页岩水化细观结构损伤与其力学行为间的关系。Ma Tianshou等人[62]结合损伤力学理论和CT扫描试验,以水化作用诱导产生的微裂隙面积为损伤变量,建立了考虑页岩水化结构损伤的本构模型,定量描述了水化作用对硬脆性页岩力学行为的影响。
目前,对于硬脆性泥页岩水化微裂纹演化过程的定性描述及细观损伤程度的定量评价,已经开展了大量系统且深入的研究,并基于损伤力学理论,建立了硬脆性泥页岩细观结构损伤程度与宏观力学行为的量化关系,为后续深入分析硬脆性泥页岩宏观尺度的井壁稳定性奠定了有利条件,但未清晰揭示诱导硬脆性泥页岩内微裂纹起裂扩展乃至细观结构损伤的物理化学和力学耦合作用机制(考虑化学效应的微裂纹演化),关于环境流体化学因素(浓度及组分等)对硬脆性泥页岩细观结构损伤影响的量化描述也鲜有涉及。
2.3 宏观尺度
评价水化作用对硬脆性泥页岩宏观强度性能的影响,是分析硬脆性泥页岩井壁稳定性的重要前提。目前,多位学者聚焦泥页岩水化宏观强度参数劣化问题,开展了大量试验研究。路保平等人[63]采用4种类型的钻井液,开展了高温高压条件下志留系页岩水化试验,并测试了岩样水化后的单轴抗压强度、弹性模量、泊松比、内摩擦角和内聚力等强度参数。黄进军等人[64-65]测试了库车组泥岩经不同种类钻井液处理剂浸泡前后的强度参数,探究了钻井液组分对泥岩抗压强度和力学变形行为的影响。卢运虎等人[66]以不同取心夹角的桑塔木组泥岩为研究对象,开展了不同围压、不同钻井液浸泡时间下的深层泥岩强度参数评价试验。曹园等人[67]以渤海、塔里木、南海、四川盆地等深层泥页岩为研究对象,对比分析了泥页岩在常温常压条件下经蒸馏水和饱和KCl溶液浸泡前后的单轴抗压强度。向朝纲等人[68]进行了硬脆性页岩经蒸馏水、油基钻井液及水基钻井液高温高压浸泡后的强度评价试验,探究了页岩强度参数随浸泡时间的变化规律。Lyu Qiao等人[69]评价了彭水硬脆性页岩经不同质量分数的NaCl、KCl和CaCl2溶液作用后的膨胀行为和单轴抗压强度,探究了无机盐溶液质量分数对于硬脆性页岩水化特征的影响。Zhang Qiangui等人[70-71]系统研究了各向异性和水化作用对硬脆性页岩力学性能的影响规律。
国内外学者从20世纪90年代开始研究入井流体与泥页岩间物理化学和力学耦合作用下的井筒尺度稳定性问题。C. H. Yew等人[72]根据热弹性力学理论,构建了泥页岩吸水量与水化膨胀应变及弹性参数间的经验关系,并考虑泥页岩水化作用对其力学效应的影响,首次形成了泥页岩流–固–化多场耦合井壁稳定理论模型。黄荣樽等人[73]在C. H. Yew等人研究的基础上,考虑了水化作用对泥页岩剪切强度参数的劣化效应,分析了力学化学耦合作用下的泥页岩井壁稳定性问题。F. K. Mody等人[74]认为钻井液与泥页岩之间的流动具有半透膜特征,将钻井液与泥页岩孔隙流体间化学势差所产生的渗透压等效为孔隙压力,直接与力学作用下的井周应力分布状态相结合,建立了泥页岩力–化耦合井壁稳定模型。Yu Mengjiao等人[75]在前人研究的基础上,考虑了钻井液中水与溶质在泥页岩中的流动行为对地层孔隙压力的影响,建立了考虑化学效应的泥页岩井壁稳定理论模型。金衍等人[76]利用考虑泥页岩水化强度劣化效应的井壁稳定模型,预测了不同钻井液密度和滤失条件下地层的临界坍塌时间。V. X. Nguyen等人[77]利用双孔双渗流–固–化多场耦合井壁稳定模型,研究了硬脆性页岩井壁稳定的时间效应。温航等人[78]建立了考虑结构特点和弱面水化的硬脆性泥页岩斜井段井壁稳定力–化耦合模型。Ma Tianshou等人[79]考虑硬脆性页岩的各向异性及多弱面结构水化特征,建立了适用于页岩气藏的力学化学耦合井壁稳定模型。Cheng Wan等人[80]考虑陆相页岩基质及弱面的水化时间效应,建立了流–固–热–化多场耦合井壁稳定模型。Zhang Shifeng等人[81]采用Weibull统计模型定量描述泥页岩水化强度损伤变量,将损伤力学理论与井壁稳定模型相结合,构建了考虑钻井液抑制(水化损伤)–封堵–扩散耦合作用的泥页岩井壁稳定理论模型。
综合来看,目前已经比较全面地研究了水化作用对于硬脆性泥页岩宏观强度劣化效应表征及对井壁稳定性的影响,但是单纯在宏观尺度上很难揭示环境介质化学因素(流体浓度及组分等)与硬脆性泥页岩力学参数乃至井壁稳定状态间的内在联系,环境流体介质与硬脆性泥页岩间的复杂反应(流体中各种活性成分与泥页岩间的物理化学反应)对于井壁稳定性的影响无法实现定量化描述,这对于通过调整流体化学性能(组分及浓度等)维持井壁稳定仍存在较大局限性。
3. 深层硬脆性泥页岩井壁稳定性研究的几点思考
对于硬脆性泥页岩力学化学耦合作用下的井壁稳定问题,目前国内外学者分别从微观作用机理的揭示、细观损伤的表征、宏观力学劣化效应及井壁稳定性定量分析等方面开展了大量深入且系统的研究,但是微观作用机理–细观结构损伤–宏观劣化效应–井壁稳定性这几者之间的关系桥梁一直没有真正建立起来,入井流体化学因素(流体组分及浓度等)与硬脆性泥页岩井壁稳定状态间的内在关系仍没有得到有效揭示,在对钻井流体抑制性–封堵性–密度间进行科学合理协调控制时很难提供有力的理论依据。
从本质上来讲,硬脆性泥页岩的井壁失稳是硬脆性泥页岩与流体间物理化学和力学耦合作用下随着微裂纹的跨尺度演化逐步导致的。因此,控制硬脆性泥页岩井壁失稳,就要从根源上明确力学化学耦合作用下微裂纹的扩展演化与井壁稳定状态间的内在关系。在硬脆性泥页岩与流体间物理化学和力学的作用下,微裂纹尖端达到一定临界条件会发生起裂,并以一定扩展速率延伸,硬脆性泥页岩内微裂纹扩展延伸到某一程度才会导致细观结构损伤,硬脆性泥页岩细观结构损伤达到一定程度才会表现出宏观强度劣化乃至改变井壁稳定状态。
基于以上分析,从考虑化学效应的微裂纹演化(化学断裂)着手,搭建微观作用机制–微裂纹演化–细观结构损伤–宏观强度劣化–井壁稳定状态间的量化关系,不失为一种探究深层硬脆性泥页岩力学化学耦合作用下井壁稳定性的新思路,而这需要解决以下关键问题:
1)考虑化学效应的硬脆性泥页岩微裂纹起裂扩展力学模型的构建,揭示流体化学因素(组分及浓度等)与微裂纹起裂扩展力学参数间的内在关系,描述硬脆性泥页岩与流体间复杂的物理化学反应(包括离子交换吸附、表面基团的解离等)对微裂纹起裂扩展行为的影响;
2)探究力学化学耦合作用下微裂纹扩展速率与细观结构损伤变量间的关系,定量描述硬脆性泥页岩微裂纹起裂扩展行为对细观结构损伤的影响;
3)基于损伤力学理论构建硬脆性泥页岩细观结构损伤与宏观力学行为间的关系;
4)结合统计损伤模型,形成考虑硬脆性泥页岩水化强度损伤的井壁稳定控制模型,实现岩石与流体间的微观反应对于硬脆性泥页岩井壁稳定性影响的模型化描述,揭示入井流体化学因素(组分及浓度等)与硬脆性泥页岩井壁稳定状态间的内在关系,为通过调节入井流体性能维持硬脆性泥页岩井壁稳定状态提供理论依据。
4. 结束语
针对硬脆性泥页岩力学化学耦合作用下的井壁稳定性问题,系统阐述了钻井流体作用下硬脆性泥页岩微观作用机制,可视化表征了钻井流体与应力耦合下硬脆性泥页岩细观结构演化特征,建立了深层硬脆性泥页岩井壁稳定力学化学耦合模型,并提出了坍塌压力的预测方法,为硬脆性泥页岩井壁稳定性控制提供了有效的技术手段,工程实践也取得了较好的成效。然而,上述研究难以预测井壁坍塌程度与钻井液性能的定量关系,导致深层硬脆性泥页岩井壁失稳问题仍然存在,如何准确认识岩石的初始缺陷状态,防止岩石缺陷跨越发展至上一个尺度显得尤为重要。从这个角度出发,硬脆性泥页岩井壁稳定力学化学耦合理论应更多关注钻井流体作用下岩石内部微缺陷的断裂与扩展,构建井壁稳定化学断裂力学理论,定量表征井壁围岩稳定性与钻井流体离子类型、浓度间的内在关系,实现协同控制井壁稳定性力学与化学参数的定量预测,创新与发展深层硬脆性泥页岩井壁稳定力学化学耦合理论,科学指导钻井液密度与性能优化设计。
-
[1] 王维波,师庆三,余华贵,等.二氧化碳驱油注入方式优选实验[J].断块油气田,2015,22(4):497-500,504. WANG Weibo,SHI Qingsan,YU Huagui,et al.Optimization experiment for carbon dioxide flooding injection mode[J].Fault-Block Oil & Gas Field,2015,22(4):497-500,504. [2] 杜勇.底水稠油油藏水平井复合增产技术[J].石油钻探技术,2016,44(1):67-72. DU Yong.Compound stimulation techniques for heavy oil reservoirs with bottom water[J].Petroleum Drilling Techniques,2016,44(1):67-72. [3] AZZOLINA N A,NAKLES D V,GORECKI C D,et al.CO2 storage associated with CO2 enhanced oil recovery:a statistical analysis of historical operations[J].International Journal of Greenhouse Gas Control,2015,37(3):384-397.
[4] 沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009:151-168. SHEN Pingping,LIAO Xinwei.The technology of CO2 geological storage and enhanced oil recovery[M].Beijing:Petroleum Industry Press,2009:151-168. [5] 江怀友,沈平平,卢颖,等.CO2提高世界油气资源采收率现状研究[J].特种油气藏,2010,17(2):5-10. JIANG Huaiyou,SHEN Pingping,LU Ying,et al.Present situation of enhancing hydrocarbon recovery factor by CO2[J].Special Oil & Gas Reservoirs,2010,17(2):5-10. [6] 秦积舜,韩海水,刘晓蕾.美国CO2驱油技术应用及启示[J].石油勘探与开发,2015,42(2):209-216. QIN Jishun,HAN Haishui,LIU Xiaolei.Application and enlightenment of carbon dioxide flooding in the United States of America[J].Petroleum Exploration and Development,2015,42(2):209-216. [7] KOOTTUNGAL L.2014 worldwide EOR survey[J].Oil & Gas Journal,2014,112(4):79-91.
[8] KOOTTUNGAL L.2012 worldwide EOR survey[J].Oil & Gas Journal,2012,110(4):57-69.
[9] KOOTTUNGAL L.2010 worldwide EOR survey[J].Oil & Gas Journal,2010,108(14):41-53.
[10] 鞠斌山,秦积舜,李治平,等.二氧化碳-原油体系最小混相压力预测模型[J].石油学报,2012,33(2):274-277. JU Binshan,QIN Jishun,LI Zhiping,et al.A prediction model for the minimum miscibility pressure of the CO2-crude oil system[J].Acta Petrolei Sinica,2012,33(2):274-277. [11] 孙业恒,吕广忠,王延芳,等.确定CO2最小混相压力的状态方程法[J].油气地质与采收率,2006,13(1):82-84. SUN Yeheng,LYU Guangzhong,WANG Yanfang,et al.A method of state equation for determining minimum miscible pressure of CO2[J].Petroleum Geology and Recovery Efficiency,2006,13(1):82-84. [12] EISSA M.CO2-oil minimum miscibility pressure model for impure and pure CO2 streams[J].Journal of Petroleum Science and Engineering,2006,58(1/2):173-185.
[13] 杨承志,岳清山,沈平平.混相驱提高石油采收率[M].北京:石油工业出版社,1991:25-34. YANG Chengzhi,YUE Qingshan,SHEN Pingping.Miscible flooding to enhance oil recovery[M].Beijing:Petroleum Industry Press,1991:25-34. [14] 谈士海,张文正.非混相CO2驱油在油田增产中的应用[J].石油钻探技术,2001,29(2):58-60. TAN Shihai,ZHANG Wenzheng.Applications of non-mixed phase CO2 for oil displacement in field stimulations[J].Petroleum Drilling Techniques,2001,29(2):58-60. [15] 沈平平,江怀友.温室气体提高采收率的资源化利用及地下埋存[J].中国工程科学,2009,11(5):54-59. SHEN Pingping,JIANG Huaiyou.Utilization of greenhouse gas as resource in EOR and storage it underground[J].Engineering Science,2009,11(5):54-59. [16] 郝永卯,薄启炜,陈月明.CO2驱油实验研究[J].石油勘探与开发,2005,32(2):110-112. HAO Yongmao,BO Qiwei,CHEN Yueming.Laboratory investigation of CO2 flooding[J].Petroleum Exploration and Development,2005,32(2):110-112. [17] 李向良,李振泉,郭平,等.二氧化碳混相驱的长岩心物理模拟[J].石油勘探与开发,2004,31(5):102-104. LI Xiangliang,LI Zhenquan,GUO Ping,et al.Long core physical simulation for CO2 miscible displacement[J].Petroleum Exploration and Development,2004,31(5):102-104. [18] JU Binshan,FAN Tailiang,JIANG Zaixing.Modeling asphaltene precipitation and flow behavior in the processes of CO2 flood for enhanced oil recovery[J].Journal of Petroleum Science and Engineering,2013,109(3):144-154.
[19] 王杰,谭保国,吕广忠.一种通过数值模拟手段划分CO2驱替相带的新方法:以高89块油藏为例[J].科技导报,2013,31(9):46-49. WANG Jie,TAN Baoguo,LYU Guangzhong.Numerical simulation for division of phase Zone displacement:with Gao 89 as an example[J].Science & Technology Review,2013,31(9):46-49. [20] JU Binshan,WU Yushu,QIN Jishun.Computer modeling of the displacement behavior of carbon dioxide in undersaturated oil reservoirs[J].Oil & Gas Science and Technology,2015,70(6):951-965.
-
期刊类型引用(15)
1. 张鑫,卢运虎,付兴,谢仁军,周长所,袁俊良,宋杨杰. 基于CNN-MultiLSTM的坍塌压力预测方法. 石油机械. 2025(02): 1-8 . 百度学术
2. 高书阳,薄克浩,张亚云,高宏,皇甫景龙. 川东北陆相页岩储层井壁失稳机理研究. 钻井液与完井液. 2025(02): 217-224 . 百度学术
3. 索彧,李芬芬,何文渊,付晓飞,潘哲君,齐悦,董牧宇. 钻井液驱替下古龙页岩力学特性及弱化规律. 东北石油大学学报. 2025(02): 97-106+137-138 . 百度学术
4. 李佳欣,陈勉,夏阳,卢运虎,周波,张樱曦,项建. 塔西南高地应力地层井壁失稳特征及影响因素分析. 东北石油大学学报. 2025(02): 84-96+136-137 . 百度学术
5. 范翔宇,蒙承,张千贵,马天寿,李柱正,王旭东,张惊喆,赵鹏斐,邓健,周桂全. 超深地层井壁失稳理论与控制技术研究进展. 天然气工业. 2024(01): 159-176 . 百度学术
6. 白杨,翟玉芬,邱小江,罗平亚,李道雄. 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究. 石油钻探技术. 2024(02): 146-152 . 本站查看
7. 宋兆辉. 树莓状聚合物纳微米封堵剂的制备及性能评价. 石油钻探技术. 2024(03): 84-90 . 本站查看
8. 刘宝生,徐鲲,李文龙,李庄威,杨保健. 渤海秦皇岛27-3区块探井快速钻井关键技术. 中国海上油气. 2024(04): 153-160 . 百度学术
9. 杨进,傅超,刘书杰,李中,张伟国,刘正礼. 中国深水钻井关键技术与装备现状及展望. 世界石油工业. 2024(04): 69-80 . 百度学术
10. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 百度学术
11. 白杨,翟玉芬,罗平亚,代锋,吴凌风,罗玉婧. 四川长宁页岩气长水平段油基钻井液井壁稳定技术. 钻采工艺. 2024(06): 152-158 . 百度学术
12. 祁文莉,吴惠梅,谢贤东,楼一珊,刘宏. 苏北盆地地层岩石特性及井壁坍塌周期研究. 中国海上油气. 2024(06): 108-118 . 百度学术
13. 马天寿,张东洋,杨赟,陈颖杰. 基于机器学习模型的斜井坍塌压力预测方法. 天然气工业. 2023(09): 119-131 . 百度学术
14. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
15. 金衍,张亚洲,卢运虎. 力学化学耦合的硬脆性泥页岩微裂纹扩展机理研究进展与思考. 石油科学通报. 2023(05): 577-587 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 7353
- HTML全文浏览量: 80
- PDF下载量: 11264
- 被引次数: 20