Research on Vibration Reduction, Energy Enhancement, and Acceleration Methods for Drilling Strings of 10 000-Meter Deep Wells
-
摘要:
万米深井超深超长井段钻进过程中存在钻柱振动剧烈、能量传递困难、破岩效率低、钻头使用寿命短等问题,亟需开展万米深井钻柱减振与井底增能技术研究。根据超深层钻井环境的主要特征,结合近年来钻柱动力学研究结果,提出了以钻井过程中钻柱振动为能量来源提高井底钻井液射流压力的方法,在减小钻柱振动保护钻头的同时,提高钻头射流压力,实现井下增能破岩,解决井下振动强度大、井底水力能量不足的问题;并研制了井底钻柱减振增能装置,进行了现场试验。研究和试验结果表明:钻柱振动蕴含巨大的能量,该能量可以转化为破岩提速能量;设计的井底钻柱减振增能装置,可以提高钻井液射流压力,同时可以降低钻柱振动导致的安全风险,从而显著提高钻井速度。研究成果为万米深井减振提速技术开拓了新方向,为加快深部油气资源的勘探与开发提供了技术支持。
Abstract:There are a series of problems in the drilling process of ultra-deep and ultra-long sections of 10 000-meter deep wells, such as severe vibration of the drilling string, slow speed of rock breaking, and short effective working life of the drill bit. Therefore, it is urgent to carry out research on vibration reduction of the drilling string and downhole energy enhancement technology of the 10 000-meter deep wells. According to the main characteristics of the ultra-deep drilling environment and recent research results on drilling string dynamics, a method was proposed to use drilling string vibration as an energy source during the drilling process to increase the jet pressure of downhole drilling fluid. While reducing drilling string vibration to protect the drill bit, the method increased the jet pressure of the drill bit to achieve downhole energy enhancement and rock breaking, solving the problems of high vibration intensity and insufficient hydraulic energy at the bottom of the wells. A vibration reduction and energy enhancement device for the downhole drilling string was developed, and on-site tests were conducted. The research results indicate that drilling string vibration contains enormous energy, which can be converted into energy for accelerating rock breaking. The designed vibration reduction and energy enhancement device for the downhole drilling string can increase the jet pressure of drilling fluid and reduce the safety risks caused by drilling string vibration, thereby significantly improving drilling speed. The research results have opened up new directions for the vibration reduction and acceleration technology of 10 000-meter deep wells and provided technical support for accelerating the exploration and development of deep oil and gas resources.
-
-
表 1 BX1井钻至不同井深时的水力参数
Table 1 Hydraulic parameters during drilling at different depths of Well BX1
井深/
m钻井液排量/
(L·s−1)钻井液密度/
(kg·L−1)钻头压降/
MPa井口泵压/
MPa4 500 25 1.66 1.20 19.5 5 000 24 1.71 1.08 19.4 5 500 22 1.79 0.78 20.0 6 000 19 1.83 0.45 19.8 表 2 使用与未使用井底钻柱减振增能提速装置的机械钻速对比
Table 2 Comparison of ROP with and without vibration reduction, energy enhancement, and acceleration tools for downhole drilling string
井类型 井名 井段/m 平均机械钻速/
(m·h−1)试验井 M502-H2井 1 500~4 024 21.1 对比井 M502井 1 498~4 110 11.8 M502-H4井 1 502~4 070 12.6 M502-H6井 1 500~4 250 12.2 -
[1] 陈国庆,郑瑞强,刘文鹏,等. 钻井提速工具设计与井下安全的探讨[J]. 西部探矿工程,2022,34(8):51–53. doi: 10.3969/j.issn.1004-5716.2022.08.017 CHEN Guoqing, ZHENG Ruiqiang, LIU Wenpeng, et al. Exploration of design of drilling acceleration tools and underground safety[J]. West-China Exploration Engineering, 2022, 34(8): 51–53. doi: 10.3969/j.issn.1004-5716.2022.08.017
[2] 甘心. 钻井提速用振动冲击工具研究进展[J]. 钻探工程,2021,48(2):85–93. doi: 10.12143/j.ztgc.2021.02.012 GAN Xin. Advances in vibration impactors for drilling accelera-tion[J]. Drilling Engineering, 2021, 48(2): 85–93. doi: 10.12143/j.ztgc.2021.02.012
[3] 穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260. MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.
[4] 罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037 LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037
[5] 尹浩,梁健,李宽,等. 万米科学钻探关键机具优化措施研究[J]. 钻探工程,2023,50(4):16–24. YIN Hao, LIANG Jian, LI Kuan, et al. Research on optimization measures of key instrument for myriametric scientific drilling[J]. Drilling Engineering, 2023, 50(4): 16–24.
[6] 尹浩,梁健,孙建华,等. 万米科学钻探钻杆柱的优化配置发展趋势[J]. 科技导报,2023,41(6):108–120. YIN Hao, LIANG Jian, SUN Jianhua, et al. Development trend of drill string optimal configuration in myriametre scientific drilling[J]. Science & Technology Review, 2023, 41(6): 108–120.
[7] 刘永旺,管志川,张洪宁,等. 基于钻柱振动的井下提速技术研究现状及展望[J]. 中国海上油气,2017,29(4):131–137. LIU Yongwang, GUAN Zhichuan, ZHANG Hongning, et al. Research status and prospect of ROP-enhancing technology based on drill string vibration[J]. China Offshore Oil and Gas, 2017, 29(4): 131–137.
[8] 高明帅,王瑜,王志乔,等. 基于磁流变液的井下钻具主动减振技术[J]. 石油机械,2013,41(9):7–11. doi: 10.3969/j.issn.1001-4578.2013.09.002 GAO Mingshuai, WANG Yu, WANG Zhiqiao, et al. MRF-based downhole tool active vibration damper technology[J]. China Petroleum Machinery, 2013, 41(9): 7–11. doi: 10.3969/j.issn.1001-4578.2013.09.002
[9] 汤楠,汪跃龙,霍爱清,等. 基于信号相似性的导向钻井下传信号处理方法[J]. 石油勘探与开发,2012,39(1):111–117. TANG Nan, WANG Yuelong, HUO Aiqing, et al. A downward signal processing method for rotary steerable drilling system based on signal similarity[J]. Petroleum Exploration and Development, 2012, 39(1): 111–117.
[10] 左欢欢. 相似性原理的应用探究[J]. 产业与科技论坛,2016,15(20):73. doi: 10.3969/j.issn.1673-5641.2016.20.039 ZUO Huanhuan. Exploration of the application of similarity principle[J]. Industrial & Science Tribune, 2016, 15(20): 73. doi: 10.3969/j.issn.1673-5641.2016.20.039
[11] 魏文忠,管志川,刘永旺,等. 直井眼钟摆钻具纵向振动特性的实验研究[J]. 中国石油大学学报(自然科学版),2007,31(2):64–68. doi: 10.3321/j.issn:1000-5870.2007.02.013 WEI Wenzhong, GUAN Zhichuan, LIU Yongwang, et al. Experimental study on longitudinal vibration characteristics of pendulum assembly in straight hole[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(2): 64–68. doi: 10.3321/j.issn:1000-5870.2007.02.013
[12] 刘永旺,管志川,魏文忠,等. 井底钟摆类钻具转动规律的实验研究[J]. 钻采工艺,2008,31(5):27–29. doi: 10.3969/j.issn.1006-768X.2008.05.008 LIU Yongwang, GUAN Zhichuan, WEI Wenzhong, et al. Experimental study on rotary characteristics of bottom pendulum assembly[J]. Drilling & Production Technology, 2008, 31(5): 27–29. doi: 10.3969/j.issn.1006-768X.2008.05.008
[13] 魏文忠. 底部钻柱振动特性及减振增压装置设计研究[D]. 青岛:中国石油大学(华东),2007. WEI Wenzhong. Study on vibration characteristic of bottom drilling string and design of drilling string shock absorption & down hole hydraulic pressurizing system[D]. Qingdao: China University of Petroleum(East China), 2007.
[14] 崔金栋. 减振冲击钻井系统设计研究[D]. 青岛:中国石油大学(华东),2008. CUI Jindong. Design research on drilling string shock absorption & percussion system[D]. Qingdao: China University of Petroleum(East China), 2008.
[15] 史怀忠,李根生,王学杰,等. 水力脉冲空化射流欠平衡钻井提高钻速技术[J]. 石油勘探与开发,2010,37(1):111–115. SHI Huaizhong, LI Gensheng, WANG Xuejie, et al. Improving the rate of penetration by hydraulic pulsating-cavitating water jet under-balance pressure drilling[J]. Petroleum Exploration and Development, 2010, 37(1): 111–115.
[16] 李根生,史怀忠,沈忠厚,等. 水力脉冲空化射流钻井机理与试验[J]. 石油勘探与开发,2008,35(2):239–243. doi: 10.3321/j.issn:1000-0747.2008.02.018 LI Gensheng, SHI Huaizhong, SHEN Zhonghou, et al. Mechanisms and tests for hydraulic pulsed cavitating jet assisted drilling[J]. Petroleum Exploration and Development, 2008, 35(2): 239–243. doi: 10.3321/j.issn:1000-0747.2008.02.018
[17] 王智锋. 负压脉冲钻井技术理论及方法[J]. 石油钻采工艺,2005,27(6):13–15. doi: 10.3969/j.issn.1000-7393.2005.06.005 WANG Zhifeng. Discussion on theory & methodology of suction-pulse drilling technique[J]. Oil Drilling & Production Technology, 2005, 27(6): 13–15. doi: 10.3969/j.issn.1000-7393.2005.06.005
[18] LIU Yongwang, GUAN Zhichuan. Discussion on the energy sources of down-hole accelerate ROP tool in the process of drilling deep or ultra-deep well[C]//The International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2012). Nanjing: IEEE, 2012: 886-890.
[19] 刘永旺. 井下减振增压装置设计研究[D]. 青岛:中国石油大学(华东),2007. LIU Yongwang. Design research on drill string absorption & down hole hydraulic pressurizing system[D]. Qingdao: China University of Petroleum(East China), 2007.
[20] 刘永旺,管志川,史玉才,等. 井底光钻铤钻具组合旋转及钻压波动规律模拟研究[J]. 石油矿场机械,2012,41(5):52–56. doi: 10.3969/j.issn.1001-3482.2012.05.013 LIU Yongwang, GUAN Zhichuan, SHI Yucai, et al. Experiment on rotation and longitudinal vibration regularity of slick bottom hole assembly in bottom hole[J]. Oil Field Equipment, 2012, 41(5): 52–56. doi: 10.3969/j.issn.1001-3482.2012.05.013
[21] ZHANG Yuying, LIU Yongwang, XU Yiji, et al. Drilling characteristics of combinations of different high pressure jet nozzles[J]. Journal of Hydrodynamics, 2011, 23(3): 384–390. doi: 10.1016/S1001-6058(10)60127-8
[22] 管志川,张洪宁,张伟,等. 吸振式井下液压脉冲发生装置[J]. 石油勘探与开发,2014,41(5):618–622. doi: 10.11698/PED.2014.05.15 GUAN Zhichuan, ZHANG Hongning, ZHANG Wei, et al. Equipment and technique for improving penetration rate by the transformation of drill string vibration to hydraulic pulsating jet[J]. Petroleum Exploration and Development, 2014, 41(5): 618–622. doi: 10.11698/PED.2014.05.15
[23] 张德彪. 井下减振增压钻井提速技术及其现场应用分析[J]. 中国石油和化工标准与质量,2021,41(16):183–184. doi: 10.3969/j.issn.1673-4076.2021.16.090 ZHANG Debiao. Analysis of downhole vibration reduction and pressure boosting drilling speed increasing technology and its on-site application[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(16): 183–184. doi: 10.3969/j.issn.1673-4076.2021.16.090
[24] 管志川,刘永旺,魏文忠,等. 井下钻柱减振增压装置工作原理及提速效果分析[J]. 石油钻探技术,2012,40(2):8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002 GUAN Zhichuan, LIU Yongwang, WEI Wenzhong, et al. Downhole drill string absorption & hydraulic supercharging device’ working principle and analysis of speed-increasing effect[J]. Petroleum Drilling Techniques, 2012, 40(2): 8–13. doi: 10.3969/j.issn.1001-0890.2012.02.002
[25] 张洪宁. 直井井底钻压波动特性及吸振式脉冲发生装置设计与应用[D]. 青岛:中国石油大学(华东),2016. ZHANG Hongning. Design and application of hydraulic pulsed jet generator based on the research of fluctuation of weight on bit in vertical well[D]. Qingdao: China University of Petroleum(East China), 2016.