深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

金衍, 薄克浩, 张亚洲, 卢运虎

金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
引用本文: 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
Citation: JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024

深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

基金项目: 国家自然科学基金项目“深层脆性页岩井壁失稳的化学断裂机理与控制研究”(编号:52074314)资助
详细信息
    作者简介:

    金衍(1972—),男,浙江临海人,1994年毕业于石油大学(华东)石油工程专业,1998年获石油大学(华东)油气井工程专业硕士学位,2001年获石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事油气井岩石力学与工程方面的研究工作。系本刊编委。E-mail:jiny@cup.edu.cn

  • 中图分类号: TE28

Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale

  • 摘要:

    深层及超深层油气资源正逐步成为我国重点勘探开发的关键领域,但钻井过程中深层硬脆性泥页岩地层井壁失稳问题频发,严重制约着深层及超深层油气资源高效开发。力学化学耦合作用下的深层硬脆性泥页岩井壁稳定问题,是一个涉及微观、细观及宏观跨尺度演化的复杂问题。阐述了力学化学耦合作用下硬脆性泥页岩井壁失稳的基本原理,并分别从微观、细观和宏观尺度,总结了硬脆性泥页岩与入井流体间的作用机理、细观结构损伤演化的定量表征、泥页岩水化宏观力学劣化效应及井壁稳定性定量分析方面的研究进展,从考虑化学效应的断裂力学角度,提出了探索硬脆性泥页岩井壁稳定性问题的新思路。

    Abstract:

    The oil and gas resources from deep and ultra-deep reservoirs in China are the most important target of exploration and development. However, pervasive and ubiquitous wellbore instability in hard brittle deep shale seriously compromises the efficient development of deep and ultra-deep oil and gas resources. Wellbore instability in deep hard brittle shale under the chemo-mechanical coupling is a complicated problem involving multi-scale evolution among micro-scale, meso-scale and macro-scale. The basic principle of wellbore instability in hard brittle shale under chemo-mechanical coupling was briefly introduced. In addition, the previous studies on the mechanism between hard brittle shale and drilling fluid, quantitative description of the evolution of damage in mesocosm structures, macroscopic mechanical deterioration of shale after hydration, and quantitative analysis of wellbore stability, were reviewed in terms of micro-scale, meso-scale and macro-scale. Moreover, a new idea was proposed for wellbore stability in hard brittle shale from the perspective of fracture mechanics considering chemical effects.

  • 图  1   硬脆性泥页岩微裂纹等缺陷多尺度演化诱导的井壁垮塌示意

    Figure  1.   Wellbore collapse induced by multi-scale evolution of microcracks and other defects in hard brittle shale

    图  2   蒙脱石层间域内吸附不同数量水分子后的微观构象[6]

    Figure  2.   Microscopic conformation of montmorillonite absorbing different amounts of water molecules in the interlaminar domain[6]

    图  3   龙马溪组硬脆性页岩水化前后二维和三维CT成像[44]

    Figure  3.   2D and 3D CT images of hard brittle shale in Longmaxi Formation before and after hydration [44]

    图  4   平行层理取心页岩水化的细观过程(120 ℃,3.5 MPa)[53]

    Figure  4.   Mesoscopic process of hydration of shale core with parallel bedding (120 ℃,3.5 MPa) [53]

  • [1] 陈勉,金衍. 深井井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2005,33(5):28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    CHEN Mian, JIN Yan. Advances and developmental trend of the wall stability technique[J]. Petroleum Drilling Techniques, 2005, 33(5): 28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    [2] 曾义金,刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术,2005,33(5):1–5.

    ZENG Yijin, LIU Jianli. Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 1–5.

    [3] 徐同台. 井壁稳定技术研究现状及发展方向[J]. 钻井液与完井液,1997,14(4):36–43.

    XU Tongtai. On wellbore stability technology[J]. Drilling Fluid & Completion Fluid, 1997, 14(4): 36–43.

    [4] 邓虎,孟英峰. 泥页岩稳定性的化学与力学耦合研究综述[J]. 石油勘探与开发,2003,30(1):109–111.

    DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1): 109–111.

    [5] 徐四龙,余维初,张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报,2014,36(1):151–153.

    XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanic and chemical coupling for shale wellbore stability[J]. Journal of Oil and Gas Technology, 2014, 36(1): 151–153.

    [6]

    ZHANG Yayun, GAO Shuyang, DU Xiaoyu, et al. Molecular dynamics simulation of strength weakening mechanism of deep shale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106123. doi: 10.1016/j.petrol.2019.05.074

    [7]

    SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer water in 2∶1 clays[J]. The Journal of Chemical Physics, 1991, 94(11): 7434–7445. doi: 10.1063/1.460175

    [8]

    BOEK E S, COVENEY P V, SKIPPER N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor[J]. Journal of the American Chemical Society, 1995, 117(50): 12608–12617. doi: 10.1021/ja00155a025

    [9]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium-montmorillonite hydrates[J]. Langmuir, 1998, 14(5): 1201–1207. doi: 10.1021/la9704720

    [10]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates[J]. Langmuir, 1997, 13(7): 2074–2082. doi: 10.1021/la9603176

    [11]

    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734–2741. doi: 10.1021/la00007a064

    [12] 徐加放,付元强,田太行,等. 蒙脱石水化机理的分子模拟[J]. 钻井液与完井液,2012,29(4):1–4.

    XU Jiafang, FU Yuanqiang, TIAN Taihang, et al. Molecular simulation on mechanism of montmorillonite hydration[J]. Drilling Fluid & Completion Fluid, 2012, 29(4): 1–4.

    [13]

    YOUNG D A, SMITH D E. Simulations of clay mineral swelling and hydration:   Dependence upon interlayer ion size and charge[J]. The Journal of Physical Chemistry B, 2000, 104(39): 9163–9170. doi: 10.1021/jp000146k

    [14] 王进,王军霞,曾凡桂. 钾基蒙脱石的分子力学和分子动力学模拟[J]. 硅酸盐学报,2009,37(4):554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    WANG Jin, WANG Junxia, ZENG Fangui. Simulation of molecular mechanics and molecular dynamics of potassium montmorillonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(4): 554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    [15]

    YOTSUJI K, TACHI Y, SAKUMA H, et al. Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments[J]. Applied Clay Science, 2021, 204: 106034. doi: 10.1016/j.clay.2021.106034

    [16]

    AKINWUNMI B, KPORHA F E A, HIRVI J T, et al. Atomistic simulations of the swelling behaviour of Na-montmorillonite in mixed NaCl and CaCl2 solutions[J]. Chemical Physics, 2020, 533: 110712. doi: 10.1016/j.chemphys.2020.110712

    [17] 黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442–448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442–448.

    [18]

    PENG Chenliang, WANG Guanshi, QIN Lei, et al. Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: Structure, energetics, and dynamics[J]. Applied Clay Science, 2020, 195: 105657. doi: 10.1016/j.clay.2020.105657

    [19]

    XIE Gang, XIAO Yurong, DENG Mingyi, et al. Investigation on the inhibition mechanism of alkyl diammonium as montmorillonite swelling inhibitor: experimental and molecular dynamics simulations[J]. Fuel, 2020, 282: 118841. doi: 10.1016/j.fuel.2020.118841

    [20]

    PENG Chenliang, WANG Guanshi, ZHANG Chunlei, et al. Molecular dynamics simulation of NH4+-smectite interlayer hydration: Influence of layer charge density and location[J]. Journal of Molecular Liquids, 2021, 336: 116232. doi: 10.1016/j.molliq.2021.116232

    [21] 刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415–422.

    LIU Xingyu, MA Chao, XIE Longlong, et al. Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 415–422.

    [22] 徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83–90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83–90.

    [23]

    HAN Zongfang, CUI Yang, MENG Qi, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982

    [24]

    DRITS V A, ZVIAGINA B B, MCCARTY D K, et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist, 2010, 95(2/3): 348–361.

    [25] 王冠,李桂臣,孙元田,等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技,2017(3):16–22.

    WANG Guan, LI Guichen, SUN Yuantian, et al. Study on molecular simulation of illite on hydration mechanism and water absorption behavior[J]. Coal Science & Technology Magazine, 2017(3): 16–22.

    [26] 刘勇,周国庆,况联飞. 常温与低温下的伊利石水化性能分子动力学模拟[J]. 煤炭技术,2018,37(10):353–356.

    LIU Yong, ZHOU Guoqing, KUANG Lianfei. Molecular dynamics simulation of hydration properties of illite at normal and low temperatures[J]. Coal Technology, 2018, 37(10): 353–356.

    [27] 刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81–89.

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 81–89.

    [28]

    GHASEMI M, SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2021, 335: 116188. doi: 10.1016/j.molliq.2021.116188

    [29]

    CHEN Jun, MIN Fanfei, LIU Lingyun, et al. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations[J]. Applied Surface Science, 2019, 476: 6–15. doi: 10.1016/j.apsusc.2019.01.081

    [30]

    CHEN Zhongcun, ZHAO Yaolin, XU Xuewen, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256. doi: 10.1016/j.commatsci.2019.109256

    [31]

    CHANG Ming, MA Xiaomin, FAN Yuping, et al. Adsorption of different valence metal cations on kaolinite: results from experiments and molecular dynamics simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656(Part A): 130330.

    [32]

    ZHENG Y, ZAOUI A. Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23): 5994–6001. doi: 10.1016/j.physa.2013.07.019

    [33]

    CAMARA M, XU Jiafang, WANG Xiaopu, et al. Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure[J]. Applied Clay Science, 2017, 146: 206–215. doi: 10.1016/j.clay.2017.05.045

    [34] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018,46(10):1489–1498.

    ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489–1498.

    [35] 况联飞,周国庆,商翔宇,等. 钠蒙脱土晶层间水分子结构分子动力学模拟[J]. 煤炭学报,2013,38(3):418–423.

    KUANG Lianfei, ZHOU Guoqing, SHANG Xiangyu, et al. Molecular dynamic simulation of interlayer water structure in Na-montmorillonite[J]. Journal of China Coal Society, 2013, 38(3): 418–423.

    [36]

    PENG Jianfei, YI Hao, SONG Shaoxian, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Results in Physics, 2019, 12: 113–117. doi: 10.1016/j.rinp.2018.11.011

    [37] 石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.

    [38] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.1038/aps.2011.157

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.1038/aps.2011.157

    [39] 马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227–233.

    MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227–233.

    [40] 林永学,高书阳,曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114606.

    LIN Yongxue, GAO Shuyang, ZENG Yijin. Study of shale micro-fracture propagation based on tomographic technique[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114606.

    [41]

    ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011

    [42] 贾利春,张超平,周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214–217.

    JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214–217.

    [43] 高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术,2018,46(3):20–26.

    GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi shale gas reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.

    [44]

    WANG Qing, LYU Chaohui, COLE D R. Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 176: 745–753. doi: 10.1016/j.petrol.2019.01.068

    [45] 王良,马辉运,韩慧芬,等. 长宁区块页岩水化起裂机理及应用[J]. 钻采工艺,2020,43(增刊1):27–30.

    WANG Liang, MA Huiyun, HAN Huifen, et al. Mechanism of shale hydration cracking and application at Changning Block[J]. Drilling & Production Technology, 2020, 43(supplement1): 27–30.

    [46] 曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征:以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.

    ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: a case study of Longmaxi Formation shale in the Changning Area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66–75.

    [47] 朱宝龙,李晓宁,巫锡勇,等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):3896–3905.

    ZHU Baolong, LI Xiaoning, WU Xiyong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(supplement2): 3896–3905.

    [48] 刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):25–29.

    LIU Jingping, SUN Jinsheng. Borehole wall collapse and control in shale gas well drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25–29.

    [49] 刘向君,熊健,梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版),2016,38(3):178–186.

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178–186.

    [50]

    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Experimental study on hydration damage mechanism of shale from the Longmaxi Formation in southern Sichuan Basin, China[J]. Petroleum, 2016, 2(1): 54–60. doi: 10.1016/j.petlm.2016.01.002

    [51]

    WANG Yuepeng, LIU Xiangjun, LIANG Lixi, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103

    [52] 卢运虎,梁川,金衍,等. 高温下页岩水化损伤的各向异性实验研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114614.

    LU Yunhu, LIANG Chuan, JIN Yan, et al. Experimental study on hydration damage of anisotropic shale under high temperature[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114614.

    [53]

    LU Yunhu, ZENG Lingping, JIN Yan, et al. Effect of shale anisotropy on hydration and its implications for water uptake[J]. Energies, 2019, 12(22): 4225. doi: 10.3390/en12224225

    [54] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16

    [55] 隋微波,田英英,姚晨昊. 页岩水化微观孔隙结构变化定点观测实验[J]. 石油勘探与开发,2018,45(5):894–901.

    SUI Weibo, TIAN Yingying, YAO Chenhao. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 894–901.

    [56] 吴小林,刘向君. 泥页岩水化过程中声波时差变化规律研究[J]. 西南石油大学学报,2007,29(增刊2):57–60.

    WU Xiaolin, LIU Xiangjun. The process and microscopic mechanism of shale hydration[J]. Journal of Southwest Petroleum University, 2007, 29(supplement2): 57–60.

    [57] 王光兵,刘向君,梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程,2017,17(36):60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    [58] 王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687–693.

    WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687–693.

    [59] 钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.1016/S1876-3804(17)30070-8

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.1016/S1876-3804(17)30070-8

    [60]

    WANG Ping, QU Zhan, CHARALAMPIDOU E M. Shale hydration damage captured by nuclear magnetic resonance[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1129–1135. doi: 10.1080/01932691.2018.1496839

    [61] 余致理,郭高峰,余恒,等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版),2022,37(1):44–50.

    YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(1): 44–50.

    [62]

    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025

    [63] 路保平,林永学,张传进. 水化对泥页岩力学性质影响的实验研究[J]. 地质力学学报,1999,5(1):65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    LU Baoping, LIN Yongxue, ZHANG Chuanjin. Laboratory study on effect of hydration to shale mechanics[J]. Journal of Geomechanics, 1999, 5(1): 65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    [64] 黄进军,杨香丽,王福林,等. 处理剂对泥页岩抗压强度影响的实验研究[J]. 西南石油大学学报(自然科学版),2009,31(3):95–98.

    HUANG Jinjun, YANG Xiangli, WANG Fulin, et al. Experimental study on the effect of treatment agent on argillutits’ compressive strength[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(3): 95–98.

    [65] 刘向君,刘洪,罗平亚,等. 钻井液浸泡对库车组泥岩强度的影响及应用研究[J]. 岩石力学与工程学报,2009,28(增刊2):3920–3925.

    LIU Xiangjun, LIU Hong, LUO Pingya, et al. Research on effect of drilling fluid on Kuqa shale strength behavior and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(supplement2): 3920–3925.

    [66] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    [67] 曹园,邓金根,蔚宝华,等. 深部泥页岩水化特性研究[J]. 科学技术与工程,2014,14(6):118–120.

    CAO Yuan, DENG Jingen, WEI Baohua, et al. Hydration properties research of deep formation shale[J]. Science Technology and Engineering, 2014, 14(6): 118–120.

    [68] 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田,2018,25(6):803–806.

    XIANG Chaogang, CHEN Junbin, YANG Gang. Experiment of brittle shale strength characteristics under drilling fluids soaking[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 803–806.

    [69]

    LYU Qiao, LONG Xinping, RANJITH P, et al. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124–138. doi: 10.1016/j.enggeo.2017.12.002

    [70]

    ZHANG Qiangui, FAN Xiangyu, CHEN Ping, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J]. Engineering Geology, 2020, 269: 105547. doi: 10.1016/j.enggeo.2020.105547

    [71]

    LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Rock mechanics and wellbore stability of deep shale during drilling and completion processes[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108882. doi: 10.1016/j.petrol.2021.108882

    [72]

    YEW C H, CHENEVERT M E, WANG C L, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA

    [73] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995,12(3):15–21.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21.

    [74]

    MODY F K, HALE A H. Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions[J]. Journal of Petroleum Technology, 1993, 45(11): 1093–1101. doi: 10.2118/25728-PA

    [75]

    YU Mengjiao, CHENEVERT M E, SHARMA M M. Chemical-mechanical wellbore instability model for shales: accounting for solute diffusion[J]. Journal of Petroleum Science and Engineering, 2003, 38(3/4): 131–143.

    [76] 金衍,陈勉. 水敏性泥页岩地层临界坍塌时间的确定方法[J]. 石油钻探技术,2004,32(2):12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    JIN Yan, CHEN Mian. A method for determining the critical time of wellbore instability at water-sensitive shale formations[J]. Petroleum Drilling Techniques, 2004, 32(2): 12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    [77]

    NGUYEN V X, ABOUSLEIMAN Y N. The porochemothermoelastic coupled solutions of stress and pressure with applications to wellbore stability in chemically active shale[R]. SPE 124422, 2009.

    [78] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发,2014,41(6):748–754. doi: 10.11698/PED.2014.06.16

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16

    [79]

    MA Tianshou, CHEN Ping. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 72–98. doi: 10.1016/j.jngse.2015.05.028

    [80]

    CHENG Wan, JIANG Guosheng, LI Xiaodong, et al. A porochemothermoelastic coupling model for continental shale wellbore stability and a case analysis[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106265. doi: 10.1016/j.petrol.2019.106265

    [81]

    ZHANG Shifeng, WANG Haige, QIU Zhengsong, et al. Calculation of safe drilling mud density window for shale formation by considering chemo-poro-mechanical coupling effect[J]. Petroleum Exploration and Development, 2019, 46(6): 1271–1280. doi: 10.1016/S1876-3804(19)60280-6

  • 期刊类型引用(15)

    1. 张鑫,卢运虎,付兴,谢仁军,周长所,袁俊良,宋杨杰. 基于CNN-MultiLSTM的坍塌压力预测方法. 石油机械. 2025(02): 1-8 . 百度学术
    2. 高书阳,薄克浩,张亚云,高宏,皇甫景龙. 川东北陆相页岩储层井壁失稳机理研究. 钻井液与完井液. 2025(02): 217-224 . 百度学术
    3. 索彧,李芬芬,何文渊,付晓飞,潘哲君,齐悦,董牧宇. 钻井液驱替下古龙页岩力学特性及弱化规律. 东北石油大学学报. 2025(02): 97-106+137-138 . 百度学术
    4. 李佳欣,陈勉,夏阳,卢运虎,周波,张樱曦,项建. 塔西南高地应力地层井壁失稳特征及影响因素分析. 东北石油大学学报. 2025(02): 84-96+136-137 . 百度学术
    5. 范翔宇,蒙承,张千贵,马天寿,李柱正,王旭东,张惊喆,赵鹏斐,邓健,周桂全. 超深地层井壁失稳理论与控制技术研究进展. 天然气工业. 2024(01): 159-176 . 百度学术
    6. 白杨,翟玉芬,邱小江,罗平亚,李道雄. 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究. 石油钻探技术. 2024(02): 146-152 . 本站查看
    7. 宋兆辉. 树莓状聚合物纳微米封堵剂的制备及性能评价. 石油钻探技术. 2024(03): 84-90 . 本站查看
    8. 刘宝生,徐鲲,李文龙,李庄威,杨保健. 渤海秦皇岛27-3区块探井快速钻井关键技术. 中国海上油气. 2024(04): 153-160 . 百度学术
    9. 杨进,傅超,刘书杰,李中,张伟国,刘正礼. 中国深水钻井关键技术与装备现状及展望. 世界石油工业. 2024(04): 69-80 . 百度学术
    10. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 百度学术
    11. 白杨,翟玉芬,罗平亚,代锋,吴凌风,罗玉婧. 四川长宁页岩气长水平段油基钻井液井壁稳定技术. 钻采工艺. 2024(06): 152-158 . 百度学术
    12. 祁文莉,吴惠梅,谢贤东,楼一珊,刘宏. 苏北盆地地层岩石特性及井壁坍塌周期研究. 中国海上油气. 2024(06): 108-118 . 百度学术
    13. 马天寿,张东洋,杨赟,陈颖杰. 基于机器学习模型的斜井坍塌压力预测方法. 天然气工业. 2023(09): 119-131 . 百度学术
    14. 侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势. 石油钻探技术. 2023(05): 66-77 . 本站查看
    15. 金衍,张亚洲,卢运虎. 力学化学耦合的硬脆性泥页岩微裂纹扩展机理研究进展与思考. 石油科学通报. 2023(05): 577-587 . 百度学术

    其他类型引用(5)

图(4)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  145
  • PDF下载量:  161
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-12
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回