Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool
-
摘要: 为了提高旋转导向工具的井眼轨迹控制效果及作业安全性,研究了带静态推靠式旋转导向工具底部钻具组合(RSBHA)的横向振动特征。静态推靠式旋转导向工具通过控制3个导向翼肋的驱动压力实现井眼轨迹控制,可以将其等效为偏心距和偏心方位角已知的偏心稳定器;建立RSBHA的三维小挠度静力学模型,基于加权余量法确定RSBHA在钻压作用和井壁约束下的空间构形,获得上切点的位置;以上切点到钻头的距离作为横向振动的有效长度建立有限元模型,利用振型叠加法求解RSBHA的横向振动响应,分析工作参数和结构参数对其横向振动的影响。算例结果发现:转速约为138 r/min时, RSBHA的动态位移在距钻头8.20,18.10,24.60和31.60 m处较大;钻压对RSBHA最大弯曲应力的影响较小;偏心距和偏心方位角对RSBHA横向振动特性的影响较大,对于某些特定的偏心距和偏心方位角,RSBHA最大弯曲应力会明显增加。研究结果表明,结构参数和工作参数对RSBHA的横向振动影响较大,应对其进行优化设计,以确保旋转导向工具的应用效果和钻井作业安全。Abstract: To improve the borehole trajectory control effect and operation safety of rotary steerable tools, the analysis of the lateral vibration characteristics of rotary steerable bottom hole assembly (RSBHA) was conducted. A static push-the-bit rotary steerable tool can control borehole trajectories through its driving force produced from its three pads, and thus it can be regarded as an eccentric stabilizer with known eccentricity and eccentric azimuth. In this work, a three-dimensional statics model of RSBHA with small deflection was constructed to determine the spatial configuration of RSBHA under the weight on bit and the constraints of borehole wall by the weighted residual method, and thus to obtain the upper tangential point. Then, a finite element model was built, taking the distance between the upper tangential point and the bit as the effective length for lateral vibration. The lateral vibration responses of RSBHA could be elicited using the mode superposition method, and analysis of the influence of working and structural parameters on its lateral vibration could be made. The calculation results showed that when the rotary speed was around 138 r/min, the dynamic displacement of RSBHA was greater in the distances of 8.20 m, 18.10 m, 24.60 m, and 31.60 m away from the bit. The weight on bit had little impact on the maximum bending stress of RSBHA, while the eccentricity and eccentric azimuth had a greater impact on the lateral vibration characteristics, and the maximum bending stress would obviously increase for certain eccentricity and eccentric azimuth. The research shows that working and structural parameters have great influence on the lateral vibration of RSBHA, which should be optimized to ensure the proper application and operation safety of rotary steerable tools.
-
满深1井位于满深1断裂带,地处塔北、塔中2大古隆起的鞍部,区域内主要发育满深1北东向走滑断裂。该井设计为四级井身结构:一开,采用ϕ444.5 mm钻头钻至井深1 498.00 m,下入ϕ365.4 mm表层套管,封固地表疏松层,防窜漏;二开,采用ϕ333.4 mm钻头钻至井深5 209.50 m,下入ϕ273.1 mm套管,封固二叠系易漏失复杂地层,并预留志留系稳定地层进行开窗侧钻;三开,采用ϕ241.3 mm钻头钻至井深7 509.50 m,进入一间房组4.00 m后中完,悬挂ϕ196.9 mm套管封固一间房组以上地层;四开,采用ϕ168.3 mm钻头钻至井深7 665.60 m,裸眼完钻。
满深1井三开主要钻遇志留系和奥陶系,奥陶系可细分为上奥陶统铁热克阿瓦提组、桑塔木组、良里塔格组和吐木休克组,以及中奥陶统一间房组。奥陶系桑塔木组埋深6 260.00~7 556.00 m,岩性主要为中厚层状灰色泥岩、泥灰岩,质地硬脆,裂缝发育,钻进中应力释放及滤液削弱了泥岩强度,井眼极易发生失稳垮塌[1-3]。该井三开采用钾基聚磺防塌钻井液钻进,钻至井深7 392.54 m接单根后难以下放到底,开泵划眼频繁憋停顶驱,在井深7 372.00 m以深反复划眼、倒划眼后上提下放仍有挂卡显示,从振动筛返出大量灰色泥岩掉块。为此,采取提高钻井液密度强化井壁力学支撑、补充磺化树脂材料进一步降低滤失量和加入KCl提高钻井液抑制性等措施,井下情况未见改善,划眼、倒划眼频繁憋停顶驱。多次大拉力上提活动钻具艰难钻至井深7 407.00 m后,因卡钻风险大,起钻换下旋转导向系统,应用“MWD+螺杆钻具”钻进;钻至井深7 392.54 m后划眼困难,频繁憋停顶驱,振动筛返出大量灰色泥岩掉块;继续钻进上提下放阻卡严重,振动筛一直有掉块返出;钻至井深7 480.57 m时上部钻具断裂,打捞困难,被迫回填侧钻。
满深1井回填后在井深7 150.00 m处侧钻,对侧钻用钻井液的抗温、抑制、防塌、封堵和润滑等性能进行了调整,按照“致密封堵、严控滤失”的思路,研究应用了高性能防塌水基钻井液,并采用了“MWD+螺杆钻具”侧钻。该井侧钻过程中扭矩正常,无划眼、倒划眼情况发生,振动筛返出岩屑代表性强,无掉块,取得了良好的应用效果。
1. 桑塔木组泥岩地层钻井液技术需求
根据邻井顺北4井的实钻情况及满深1井的地质、工程设计结果,满深1井奥陶系桑塔木组泥岩地层钻井液主要应具备以下性能:
1)桑塔木组地层埋藏深,温度可达140 ℃,钻井液需具备优良的抗温性能。
2)桑塔木组泥岩地层黏土矿物含量高(测量结果为40.9%),对水基钻井液滤液敏感性强,钻井液滤液侵入后泥岩含水量增加,孔隙压力升高,密度降低,导致泥页岩强度降低。因此,要求钻井液具有低滤失特性。
3)桑塔木组泥岩埋藏深,质地硬脆,地层揭开后,近井壁垂直方向、水平方向应力释放形成微裂缝;如不能及时封堵,微裂缝将在水力、应力等作用下相互连接而导致井眼失稳。因此,要求钻井液具有优良的屏蔽暂堵性能。
4)桑塔木组地层揭开后,在做好屏蔽暂堵及控制滤失的同时,还要求钻井液具备良好的造壁护壁性能,以及时对新钻井眼井壁进行加固,降低井眼失稳风险。
基于此,满深1井三开采用了钾基聚磺防塌钻井液,并采取了以下维护处理措施:1)进入桑塔木组泥岩地层后,将钻井液密度提高并维持在1.32 kg/L,以对井壁提供力学支撑;2)钻井液中磺化酚醛树脂、磺化褐煤树脂的含量均保持在3%,以控制钻井液高温(130 ℃)高压滤失量不高于12 mL;3)持续补充KCl,将K+质量浓度维持在20 000 mg/L;4)将乳化沥青与沥青粉复配,使沥青总含量小于3%。
但采取上述措施的效果并不理想,满深1井在7 392.54~7 480.57 m井段不断发生井下故障。分析认为:1)钾基聚磺防塌钻井液不能有效抑制灰色泥岩的剥落掉块,导致灰色泥岩层井眼失稳垮塌;2)钻井液的中压滤失量、高温高压滤失量较大,钻井液滤液对灰色泥岩强度破坏严重;3)钻井液中K+质量浓度达不到要求,且化学抑制材料单一,抑制作用有限;4)钻井液屏蔽暂堵能力不足,对微裂缝的瞬时封堵能力较弱[4]。因此,需要研究解决钻进桑塔木组泥岩地层时的钻井液问题,避免在满深1井侧钻中再次发生井下故障。
2. 高性能防塌水基钻井液技术研究
2.1 技术思路与钻井液基本配方
满深1井使用钾基聚磺防塌钻井液钻进桑塔木组泥岩地层时频繁发生井下故障,而其邻井顺北4井由水基钻井液转油基钻井液后井下恢复正常,这是由于油基钻井液具有高温高压滤失量低、抑制性强、抗温性好和润滑性强等特点[5-8]。因此,在满深1井侧钻前,从成本和性能2方面考虑,提出了“致密封堵、严控滤失”的技术思路,研究应用了高性能防塌水基钻井液[9]。以尽可能缩小与油基钻井液的性能差距和保障桑塔木组泥岩地层井壁稳定为核心目的,配制了高性能防塌水基钻井液,其基本配方为5.0%膨润土+0.3%烧碱+ 3.0%~5.0%磺化褐煤树脂SPNH+3.0%~5.0%磺化酚醛树脂SMP-Ⅲ+3.0%~5.0%沥青防塌剂FT-1A+5.0%~8.0%KCl+0.2%~0.4%多氨基井壁稳定剂[10]+4.0%超细碳酸钙+加重剂。
2.2 钻井液配方确定及抑制性评价
在钻井液基本配方的基础上,通过试验分析磺化树脂材料、KCl、多氨基井壁稳定剂和沥青防塌剂等对其性能的影响,确定高性能防塌水基钻井液的最终配方。
2.2.1 磺化树脂材料加量优化
钻井液添加剂:烧碱,磺化酚醛树脂SMP-Ⅲ,磺化褐煤树脂SPNH,沥青防塌剂FT-1A,KCl,多氨基井壁稳定剂,超细碳酸钙,加重剂。
试验条件:按顺序依次加入各钻井液添加剂,将密度调整为1.44 kg/L,低速搅拌均匀后,以6 000 r/min高速搅拌30 min,转入老化罐,在温度150 ℃下热滚4 h,冷却至50 ℃再以3 000 r/min高速搅拌5 min。
试验钻井液:1#配方,5.0%膨润土+0.3%烧碱+3.0%磺化褐煤树脂SPNH+3.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+5.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;2#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+5.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中磺化褐煤树脂SPNH和磺化酚醛树脂SMP-Ⅲ的加量,进行了磺化树脂材料对高性能防塌水基钻井液滤失性能的影响试验,结果见表1。
表 1 磺化树脂材料对钻井液滤失性能的影响试验结果Table 1. The influence of sulfonated resin on the filtration property of drilling fluid配方 塑性黏度/
(mPa∙s)动切力/
Pa静切力/Pa API滤失
量/mL高温高压滤
失量1)/mL初切 终切 1# 22 5.0 1.5 7.0 3.2 9.7 2# 23 5.5 1.5 7.5 2.0 8.2 注:1)在温度150 ℃条件下测得。 由表1可知,钻井液中添加3.0%和5.0%磺化树脂材料后的流变性差别较小,但配方2的API和高温高压滤失量更低,添加5.0%磺化树脂材料后钻井液具有更好的低滤失特性[10]。
2.2.2 KCl加量优化
试验钻井液添加剂和试验条件与2.2.1一致。
试验钻井液:2#配方;3#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中KCl的加量,进行了KCl对高性能防塌水基钻井液流性的影响试验,结果见表2。
表 2 KCl对钻井液流性的影响试验结果Table 2. The influence of KCl on rheology of drilling fluid试验条件 配方 塑性黏度/
(mPa∙s)动切力/Pa 静切力/Pa API滤失量/
mL高温高压滤失量1)/
mLK+质量浓度/
(mg·L–1)初切 终切 常温 2# 29 7.5 2.0 10.0 1.4 7.6 24 000 3# 27 6.0 2.0 8.0 1.6 8.0 35 000 150 ℃下老化24 h 2# 28 7.0 2.0 8.0 1.2 7.2 24 000 3# 24 6.0 1.5 7.0 1.5 7.8 35 000 150 ℃下老化48 h 2# 32 8.5 2.0 11.0 1.6 7.8 24 000 3# 28 5.0 2.0 8.5 1.6 8.0 35 000 150 ℃下老化72 h 2# 40 11.0 3.0 12.0 2.2 9.2 24 000 3# 30 5.5 2.0 7.5 1.8 9.6 35 000 注:1)在温度150 ℃条件下测得。 由表2可知,钻井液加入8.0%KCl可以在高温条件下保持更长时间的低黏切流态。虽然相较于加入5.0%KCl,钻井液加入8.0%KCl后的高温高压滤失量有所增加,但两者差异较小。因此,高性能防塌水基钻井液加入8.0%KCl后其性能更稳定。
2.2.3 多氨基井壁稳定剂加量优化
试验钻井液添加剂和试验条件与2.2.1和2.2.2一致。
试验钻井液:3#配方;4#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;5#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.4%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中多氨基井壁稳定剂的加量,进行了多氨基井壁稳定剂对高性能防塌水基钻井液稳定性的影响试验,结果见表3。
表 3 多氨基井壁稳定剂对钻井液稳定性的影响试验结果Table 3. The influence of multi-amino borehole wall stabilizer on drilling fluid stability配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 开罐情况 初切 终切 3# 28 6 2.0 9.0 1.6 8.2 上部有少许清液 4# 27 6 2.0 8.0 1.6 8.2 上下均匀 5# 25 5 1.5 8.0 1.7 8.0 上下均匀 注:1)在温度150 ℃条件下测得。 由表3可知,多氨基井壁稳定剂对钻井液有较好的稳定效果,加量为0.2%~0.4%时对钻井液的切力影响不大,但加量为0.3%多氨基井壁稳定剂后对钻井液流变性的影响较小,老化无清液析出;加入0.4%多氨基井壁稳定剂老化后,钻井液的高温高压滤失量略微降低,但降幅不大。因此,从性能及成本2方面考虑,选择加入0.3%的多氨基井壁稳定剂。
2.2.4 沥青防塌剂加量优化
试验钻井液添加剂和试验条件与2.2.1和2.2.3一致。
试验钻井液:4#配方;6#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+4.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;7#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+5.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中沥青防塌剂FT-1A的加量,进行了沥青防塌剂对高性能防塌水基钻井液防塌性能的影响试验,结果见表4。
表 4 沥青防塌剂对钻井液防塌性能的影响试验结果Table 4. The influence of asphalt anti-sloughing agent on anti-sloughing performance of drilling fluid配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 初切 终切 4# 28 6.5 2.0 8.0 1.6 8.2 6# 35 7.5 2.5 10.0 1.4 7.6 7# 43 9.0 3.0 12.0 1.2 7.2 注:1)在温度150 ℃条件下测得。 由表4可知,随着沥青防塌剂FT-1A加量增大,热滚后钻井液的黏度和切力逐渐升高,但钻井液的滤失量逐渐降低。从流性及控制滤失2方面考虑,将沥青防塌剂FT-1A的加量定为4.0%较为合理。
2.2.5 钻井液最终配方及岩屑回收率试验
通过试验优化磺化树脂材料、KCl、多氨基井壁稳定剂和沥青防塌剂的加量,确定高性能防塌水基钻井液的最终配方为5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+4.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
为了评价所配钻井液的抑制性能,取满深1井桑塔木组灰色泥岩岩屑,分别加入到清水、钾基聚磺防塌钻井液和高性能防塌水基钻井液中进行了回收率试验。试验方法是:将岩屑烘干,取大颗粒岩屑50 g,加入到盛有350 mL试验介质的老化罐中,在100 ℃下滚动养护16 h,然后用40目分样筛回收岩屑,烘干称重,计算滚动回收率,结果见表5。
表 5 满深1井桑塔木组灰色泥岩岩屑回收率试验结果Table 5. The recovery ratio of grey mudstone of the Well Manshen 1 in the Sangtamu Formation试验编号 试验介质 岩屑回收率,% 1 清水 5.7 2 钾基聚磺防塌钻井液 56.8 3 高性能防塌水基钻井液 83.6 由表5可知,相对于钾基聚磺防塌钻井液,桑塔木组灰色泥岩岩屑在高性能防塌水基钻井液中的回收率更高,灰色泥岩岩屑回收率提高了26.8百分点,说明高性能水基钻井液更有利于桑塔木组灰色泥岩的稳定[11]。
3. 现场应用
按照上述研究结果,满深1井在井深7 150.00 m处侧钻后,将钻井液转化为高性能防塌水基钻井液,转化步骤:1)胶液中加入多氨基井壁稳定剂,配制成高浓度聚磺胶液补充到井浆中,2个循环周胶液补充完毕后保证井浆中的磺化树脂材料含量达到5.0%,多氨基井壁稳定剂含量达到0.3%;2)使用井浆配制沥青粉浆,配制后充分水化12 h,1个循环周均匀混入到井浆中,保证井浆中沥青含量达到4.0%;3)按照循环周向井浆中均匀加入超细碳酸钙、KCl,使K+质量浓度达到35 000 mg/L以上;4)按循环周向井浆中补充4.0%预水化膨润土浆(质量分数10.0%),并补充1.0%液体润滑剂植物油,使井浆中的含油量达到5.0%,在改善滤饼质量的同时降低摩阻。
高性能防塌水基钻井液的高温高压滤失量为7.8 mL(原钻井液为11.3 mL),瞬时滤失量仅为0.6 mL;K+质量浓度36 000 mg/L( 原钻井液为20 000 mg/L );中压滤饼和高温高压滤饼致密、坚韧。
满深1井7 150.00~7 380.00 m侧钻井段应用高性能防塌水基钻井液钻进过程中,扭矩平稳,振动筛返砂无掉块,接单根上提下放正常,无阻卡显示;在井深7 380.00 m处进行短起下钻,短起下钻井段为7 380.00~7 132.00 m,短起下钻顺利,无阻卡显示,井底返砂无掉块。井深7 380.00 m处短起下钻后,因为后续为老井眼易垮塌井段,所以将钻井液密度提高至1.45 kg/L,漏斗黏度提高至70 s左右[12-13],以强化携岩能力,顺利钻至三开中完井深7 509.50 m,未发生井下故障。
为了进一步说明高性能防塌水基钻井液的实际应用效果,对满深1井三开原井眼与侧钻井眼的钻井情况进行了对比,结果见表6。
表 6 满深1井三开原井眼与侧钻井眼钻井情况对比Table 6. Comparison on drilling conditions between the original third spud borehole and the sidetracked borehole in the Well Manshen 1井眼 钻进井段/m 井段长度/m 钻进时间/d 井下情况 原井眼 7 175.00~7 392.54 217.54 7.42 正常 7 392.54~7 480.57 88.03 13.50 反复划眼、倒划眼,掉块严重,扭矩异常,断钻具 侧钻井眼 7 166.00~7 480.57 314.57 10.21 正常,井眼通畅 从表6可以看出,侧钻井眼应用高性能防塌水基钻井液后,保障了奥陶系桑塔木组泥岩层井壁稳定,未发生井下故障;而且,相较于三开原井眼,长度相差不大的侧钻井眼钻井周期大幅缩短,钻井效率大幅提高。
4. 结论与认识
1)满深1井奥陶系桑塔木组泥岩层质地硬脆,钻进时由于应力释放,在近井地带形成了微裂缝,钻井液滤液沿微裂缝侵入使岩石强度降低,当钻井液性能达不到要求时,泥岩剥落掉块,造成反复划眼且划眼扭矩波动大、憋停转盘,增大了发生井下故障的风险,钻井效率降低。
2)针对满深1井奥陶系桑塔木组泥岩地层的井眼失稳问题,结合油基钻井液的性能和特点,提出了“致密封堵、严控滤失”的技术思路,研究应用了高性能防塌水基钻井液,通过采取降低钻井液滤失量、提高钻井液化学抑制能力和强化物理封堵等措施,多元协同保障井壁稳定。
3)满深1井侧钻井段应用高性能防塌水基钻井液后,桑塔木组泥岩地层井壁稳定,无掉块产生,接单根顺利,扭矩平稳,短起下钻井眼通畅,钻井效率大幅提高。
4)满深1井桑塔木组泥岩地层使用高性能防塌水基钻井液的成功实践说明,对于硬脆性泥岩地层的井眼失稳问题,应从提高力学支撑能力、严控中压滤失量和高温高压滤失量、无机盐KCl与有机抑制剂复配提高化学抑制能力和膨润土浆与超细碳酸钙配合强化屏蔽暂堵性能等方面着手,通过多元协同方式解决井眼失稳问题。
-
-
[1] 王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺,2018,41(2):37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11 WANG Zhirui, WANG Junliang. Development of rotary steering technology in foreign countries and its status quo in China[J]. Drilling & Production Technology, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11
[2] 郑锋辉,韩来聚,杨利,等. 国内外新兴钻井技术发展现状[J]. 石油钻探技术,2008,36(4):5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002 ZHENG Fenghui, HAN Laiju, YANG Li, et al. Development of novel drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002
[3] 狄勤丰. 旋转导向井下闭环钻井技术[M]. 西安: 陕西科学技术出版社, 1999. DI Qinfeng. Rotary closed-loop drilling technology[M]. Xi’an: Shaanxi Science & Technology Press, 1999.
[4] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[5] 狄勤丰,赵业荣. 导向钻具组合动力学方程建立及传递函数求解[J]. 石油学报,2000,21(4):87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016 DI Qinfeng, ZHAO Yerong. The establishing of dynamics equations and the transfer functions of the steering assembly of the downhole closed-loop drilling system[J]. Acta Petrolei Sinica, 2000, 21(4): 87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016
[6] 李军,李东春,张辉,等. 推靠式旋转导向工具造斜能力影响因素[J]. 石油钻采工艺,2019,41(4):460–466. LI Jun, LI Dongchun, ZHANG Hui, et al. The influencing factors of the inclination ability of push-the-bit rotary guiding tool[J]. Oil Drilling & Production Technology, 2019, 41(4): 460–466.
[7] 刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2018,46(6):59–64. LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.
[8] 徐天文,杨峰,赵建国. AutoTrack旋转导向工具现场应用分析[J]. 西部探矿工程,2016,28(6):11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004 XU Tianwen, YANG Feng, ZHAO Jianguo. Analysis on the field application of AutoTrack rotary steering tool[J]. West-China Exploration Engineering, 2016, 28(6): 11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004
[9] 史玉才,滕志想,白璟,等. 改进的静态推靠式旋转导向钻具组合力学模型[J]. 中国石油大学学报(自然科学版),2018,42(5):75–80. SHI Yucai, TENG Zhixiang, BAI Jing, et al. Improved mechanical model of the static push-the-bit rotary steerable bottom-hole assembly[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 75–80.
[10] 王明杰,狄勤丰,王文昌,等. 柔性短节对RSBHA导向力特征的影响分析[J]. 钻采工艺,2012,35(1):52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16 WANG Mingjie, DI Qinfeng, WANG Wenchang, et al. Affection of flex sub's position and length on the steering force of RSBHA[J]. Drilling & Production Technology, 2012, 35(1): 52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16
[11] 王恒,管志川,史玉才,等. 柔性短节对推靠式旋转导向底部钻具组合造斜能力的影响分析[J]. 钻采工艺,2018,41(6):19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06 WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Effects of flex sub on build-up performance of push-the-bit RSBHA[J]. Drilling & Production Technology, 2018, 41(6): 19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06
[12] 彭勇,闫文辉,李继博. 旋转导向钻井工具导向力优化设计[J]. 石油钻探技术,2006,34(2):10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003 PENG Yong, YAN Wenhui, LI Jibo. The optimal design of the steering force for the rotary steerable drilling Tool[J]. Petroleum Drilling Techniques, 2006, 34(2): 10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003
[13] 狄勤丰,王明杰,胡以宝,等. 柔性短节位置对带旋转导向工具底部钻具组合动力学特性的影响[J]. 中国石油大学学报(自然科学版),2012,36(5):84–88. DI Qinfeng, WANG Mingjie, HU Yibao, et al. Effect of flex sub's position on Bottom hole assembly with rotary steering tool[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 84–88.
[14] BURGESS T M, MCDANIEL G L, DAS P K. Improving BHA tool reliability with drillstring vibration models: field experience and limitations[R]. SPE 16109, 1987.
[15] DYKSTRA M W. Nonlinear drill string dynamics[D]. Tulsa: The University of Tulsa, 1996.
[16] 张鹤,狄勤丰,覃光煦,等. 预弯底部钻具组合横向振动响应的快速求解[J]. 石油学报,2017,38(12):1441–1447. doi: 10.7623/syxb201712012 ZHANG He, DI Qinfeng, QIN Guangxu, et al. Quick solution method for lateral vibration response of Pre-bent bottom-hole assembly[J]. Acta Petrolei Sinica, 2017, 38(12): 1441–1447. doi: 10.7623/syxb201712012
[17] 李子丰. 油气井杆管柱力学及应用[M]. 北京: 石油工业出版社, 2008: 133–140. LI Zifeng. Tubular mechanics in oil-gas wells and its applications[M]. Beijing: Petroleum Industry Press, 2008: 133–140.
[18] 狄勤丰,周凤岐,赵业荣. 带可控偏心稳定器的下部钻具组合力学特性计算分析[J]. 石油钻采工艺,1999,21(4):7–11, 113. DI Qinfeng, ZHOU Fengqi, ZHAO Yerong. Analysis of mechanical features for low drill assembly with controllable eccentric stabilizer[J]. Oil Drilling & Production Technology, 1999, 21(4): 7–11, 113.
[19] 李茂生,闫相祯,高德利. 钻井液对钻柱横向振动固有频率的影响[J]. 石油大学学报(自然科学版),2004,28(6):68–71. LI Maosheng, YAN Xiangzhen, GAO Deli. Influence of drilling fluid on natural frequency of drill string lateral vibration[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2004, 28(6): 68–71.
[20] KHULIEF Y A, Al-SULAIMAN F A, BASHMAL S. Vibration analysis of drillstrings with self-excited stick-slip oscillations[J]. Journal of Sound and Vibration, 2007, 299(3): 540–558. doi: 10.1016/j.jsv.2006.06.065
[21] CAUGHEY T K, O'KELLY M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, 1965, 32(3): 583–588. doi: 10.1115/1.3627262
[22] SPANOS P D, PAYNE M L. Advances in dynamic bottomhole assembly modeling and dynamic response determination[R]. SPE 23905, 1992.
-
期刊类型引用(12)
1. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 . 百度学术
2. 田文欣,俞浩杰. 页岩储层高性能环保型水基钻井液体系及其环境影响评价. 断块油气田. 2023(01): 38-43 . 百度学术
3. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
4. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 . 百度学术
5. 薛小东,张晓瑞. 抗高温高密度水基完井液沉降稳定性实验分析. 当代化工. 2022(07): 1738-1742 . 百度学术
6. 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议. 石油钻探技术. 2022(05): 1-8 . 本站查看
7. 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 . 本站查看
8. 吴雄军,林永学,王显光,刘金华,李大奇. 顺北5-7井超深层奥陶系地层油基钻井液技术. 长江大学学报(自然科学版). 2021(01): 100-106 . 百度学术
9. 袁进科,陈礼仪,王军伟,乔友浩. 青藏高原复杂地层地质钻探低固相冲洗液试验研究. 钻探工程. 2021(04): 79-84 . 百度学术
10. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 . 百度学术
11. 舒义勇,孙俊,曾东,徐思旭,周华安,席云飞. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验. 石油钻探技术. 2021(05): 39-45 . 本站查看
12. 宿振国,王瑞和,刘均一,李光泉,李婧靓. 高性能环保水基钻井液的研究与应用. 钻井液与完井液. 2021(05): 576-582 . 百度学术
其他类型引用(1)