Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield
-
摘要: 塔里木油田跃满西区块深部地层钻井液安全密度窗口窄,易出现井漏、井塌、卡钻和盐水侵等井下复杂情况,目前所用钻井液存在高温增稠、抗CO32–/HCO3–和劣质土污染能力差等问题。为解决这些问题,研究了以抗高温聚合物降滤失剂APS220和新型高温稳定剂HTS220为主剂的高温恒流变钻井液,在试验分析主要试剂性能的基础上确定了基本配方。通过室内试验,评价了该钻井液的高温恒流变性、抗CO32–/HCO3–污染性能和抗钠膨润土污染性能,试验发现,其100与180 ℃时的塑性黏度比值为1.3,动切力比值为1.5,初切力比值为1.7,终切力比值为1.2,随温度升高各流变参数的变化幅度明显低于常用钻井液,可抗2.0%的CO32–/HCO3–复合污染、10.0%的钠膨润土污染。高温恒流变钻井液在跃满西区块2口井现场试验中,流变性能稳定,钻后井眼畅通,减少了井下复杂情况,取得了显著效果。Abstract: Safe density window of drilling fluids in the deep formations of the West Yueman Block in Tarim Oilfield is narrow, and as a result, downhole complications such as lost circulation, well collapse, drill string sticking, and salt water contamination are frequently encountered. Some drawbacks exist in available drilling fluids including thickening at high temperature and a weak resistance to pollution by CO32–/ HCO3– and poor quality soil. In this paper, a drilling fluid with constant rheology at high temperature was studied, with a high-temperature-resistant polymer fluid loss additive (APS220) and a new high-temperature stabilizer (HTS220) as the base. The basic formula was determined on the basis of the performance analysis of the main agents. Laboratory tests were performed to evaluate the constant rheology at high temperature and the resistance to CO32– / HCO3– and sodium bentonite pollution of the drilling fluid. The results showed that, the drilling fluid had a plastic viscosity ratio of 1.3, dynamic shear ratio of 1.5, initial shear ratio of 1.7 and final shear ratio of 1.2 at 100 °C and 180 °C. As temperatures rose, it presented a variation range of rheological parameters significantly lower than that of other commonly used drilling fluids, with the resistance to pollution by 2% CO32– / HCO3– and 10% sodium bentonite. In the field test of two wells in the West Yueman Block, the drilling fluid demonstrated stable rheological properties, with smooth drilled borehole and considerable downhole complication reduction.
-
-
表 1 APS220性能评价结果
Table 1 Performance evaluation of APS220
配方 塑性黏度/
(mPa·s)动切力/Pa 旋转黏度计读数 静切力/Pa API滤失量/
mL高温高压
滤失量/mLpH值 试验条件 ϕ6 ϕ3 初切 终切 1# 28 4.0 2.0 1.0 1.0 8.0 1.4 12.0 10.5 热滚前 35 10.0 13.0 12.0 6.0 20.0 2.6 22.0 8.5 热滚后 2# 25 2.0 1.0 0.5 0.5 4.0 1.6 14.2 10.5 热滚前 31 6.5 8.0 7.0 3.0 12.0 3.2 26.0 9.0 热滚后 注:热滚条件为180 ℃×16 h,流变性能测试温度为60 ℃,高温高压测试温度为180 ℃。 表 2 HTS220性能评价结果
Table 2 Performance evaluation of HTS220
HTS220
加量,%塑性黏度/
(mPa·s)动切力/
Pa旋转黏度计读数 静切力/ Pa API滤失量/
mL高温高压
滤失量/mLpH值 试验条件 ϕ6 ϕ3 初切 终切 0 25 2.0 1.0 0.5 0.5 4.0 1.6 14.2 10.5 热滚前 31 6.5 8.0 7.0 3.0 12.0 3.2 26.0 9.0 热滚后 0.5 24 2.5 2.0 1.0 1.0 4.0 1.6 14.0 10.0 热滚前 28 5.5 7.0 6.0 3.0 10.0 3.6 25.4 9.0 热滚后 1.0 20 4.0 3.0 2.0 2.0 9.0 1.3 13.2 9.5 热滚前 18 3.0 3.0 2.0 2.0 8.0 3.4 18.4 7.5 热滚后 2.0 20 2.0 2.0 1.0 1.5 4.5 1.2 12.6 9.5 热滚前 15 2.0 2.0 1.0 1.5 6.0 3.2 15.8 7.5 热滚后 2.5 22 2.5 2.0 1.5 2.0 6.0 1.2 12.8 9.5 热滚前 18 3.0 3.0 2.0 2.0 6.5 3.1 16.0 7.5 热滚后 注:热滚条件为180 ℃×16 h,流变性能测试温度为60 ℃,高温高压测试温度为180 ℃。 表 3 不同温度下高温恒流变钻井液的流变性评价结果
Table 3 Rheological properties at different temperatures of the drilling fluid with constant rheology at high temperature
热滚温度/
℃塑性黏度/
(mPa·s)动切力/
Pa旋转黏度计读数 静切力/ Pa API滤失量/
mL高温高压
滤失量/mLpH值 ϕ6 ϕ3 初切 终切 室温 20 2.0 2 1 1.50 4.50 1.2 9.5 100 20 3.0 4 3 2.50 7.00 1.0 4.2 9.5 120 18 2.5 3 2 1.75 6.00 1.4 4.6 9.0 140 18 3.0 3 2 2.00 6.00 2.2 8.5 8.5 160 17 3.5 3 2 2.00 6.50 2.6 12.2 7.5 180 15 2.0 2 1 1.50 6.00 3.2 15.8 7.5 注:热滚时间16 h,热滚后测试温度60 ℃,高温高压测试温度跟热滚温度一致。 表 4 高温恒流变钻井液抗CO32–/HCO3–污染性能评价结果
Table 4 Resistance of the drilling fluid with constant rheology at high temperature to CO32–/HCO3– pollution
试验配方 塑性黏度/
(mPa·s)动切力/
Pa旋转黏度计读数 静切力/ Pa API滤失量/
mL老化条件 ϕ6 ϕ3 初切 终切 基浆 20 2.0 2 1 1.5 4.5 1.2 热滚前 18 3.0 3 2 2.0 6.0 2.2 热滚后 基浆+1.0%Na2CO3 18 6.5 10 9 5.0 10.0 1.8 热滚前 20 7.0 10 9 5.0 8.5 2.6 热滚后 基浆+1.0%NaHCO3 19 4.5 5 4 3.5 9.0 1.0 热滚前 17 3.0 4 3 2.5 6.0 3.2 热滚后 基浆+1.0%Na2CO3 +1.0%NaHCO3 23 9.0 13 12 6.0 10.5 2.0 热滚前 27 9.5 15 13 6.5 12.0 4.2 热滚后 基浆+1.0%Na2CO3 +1.0%NaHCO3+
1.0%HTS220+0.5%CaO21 5.0 4 3 2.0 10.0 1.8 热滚前 17 3.0 3 2 2.0 8.0 3.8 热滚后 基浆+1.0%Na2CO3+ 1.0%NaHCO3+0.5%CaO 18 5.0 6 5 3.5 12.0 2.4 热滚前 23 8.0 10 8 6.0 15.0 4.0 热滚后 注:基浆即高温恒流变钻井液基本配方,下同;热滚条件为140 ℃×16 h。 表 5 高温恒流变钻井液抗钠膨润土污染性能评价结果
Table 5 Resistance of the drilling fluid with constant rheology at high temperature to sodium bentonite
钠膨润土加量,% 塑性黏度/
(mPa·s)动切力/
Pa旋转黏度计读数 静切力/ Pa 老化条件 ϕ6 ϕ3 初切 终切 0 20 2.0 2 1 1.5 4.5 热滚前 18 3.0 3 2 2.0 6.0 热滚后 5 21 3.5 4 3 2.0 7.5 热滚前 17 3.0 3 2 2.0 6.0 热滚后 10 22 4.0 4 3 2.0 9.0 热滚前 19 4.5 5 4 3.0 8.0 热滚后 注:老化条件140 ℃×16 h,测试温度60 ℃;关于钠膨润土加量,基浆用体积计算,加入的钠膨润土以质量计算。 表 6 YM21X井实钻钻井液性能
Table 6 Performance of the drilling fluid in Well YM21X
井深/m 密度/
(kg·L–1)漏斗黏度/
s塑性黏度/
(mPa·s)动切力/
Pa静切力/Pa API滤失量/
mL离子质量浓度/(mg·L–1) 初切 终切 Cl– Ca2+ CO32– HCO3– 6 128.00 1.41 56 30 5.0 1.0 7.5 4.6 27 106 148 1 920 1 830 6 139.97 1.42 88 41 10.0 8.5 24.0 5.8 36 141 87 3 840 5 856 6 377.00 1.42 65 35 6.0 1.5 7.0 7.6 34 636 0 2 160 6 832 6 419.98 1.43 108 43 12.0 6.0 23.0 8.4 30 620 0 4 200 5 185 6 613.00 1.43 63 30 7.5 4.5 20.0 5.6 33 632 0 4 080 4 148 6 705.14 1.43 76 37 8.5 9.0 26.0 6.4 33 130 0 3 600 6 100 7 030.00 1.45 54 30 4.5 1.0 10.0 4.0 45 679 462 1 800 3 660 7 510.00 1.45 56 29 5.5 1.0 11.0 2.8 47 185 372 1 500 2 928 注:井温梯度为2.0 ℃/100m。 表 7 YM20X井实钻钻井液性能
Table 7 Performance of the drilling fluid in Well YM20X
井深/m 密度/
(kg·L–1)漏斗黏度/
s塑性黏度/
(mPa·s)动切力/
Pa静切力/Pa API滤失量/
mL离子质量浓度/(mg·L–1) 初切 终切 Cl– Ca2+ 5 969.00 1.29 59 31 9.0 2.0 8.0 4.4 27 000 480 6 706.00 1.42 62 28 8.0 2.0 11.0 4.4 34 000 120 7 226.00 1.46 58 27 5.5 1.5 8.0 3.2 36 000 300 7 458.00 1.46 59 30 6.0 1.5 6.0 3.0 31 000 200 7 479.00 1.46 56 23 8.0 2.0 8.0 2.4 30 700 120 注:YM20X井三开钻井液中CO32–质量浓度为1 800~2 880 mg/L,HCO3–质量浓度为2 196~4 880 mg/L。 -
[1] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.
[2] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. YUAN Guodong, WANG Hongyuan, CHEN Zongqi,et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27.
[3] 于得水,徐泓,吴修振,等. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术,2020,48(5):49–54. YU Deshui, XU Hong, WU Xiuzhen, et al. High performance anti-sloughing water based drilling fluid technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49–54.
[4] 谭万仓,邵红君,王力娟,等. 致密砂岩盖层特征及分类评价标准:以满加尔–英吉苏凹陷为例[J]. 断块油气田,2020,27(3):304–308. TAN Wancang, SHAO Hongjun, WANG Lijuan, et al. Characteristics and classification evaluation criteria of tight sandstone caprock:taking Manjiaer-Yingjisu Sag as an example[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 304–308.
[5] 李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液,2015,32(6):85–88. LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deep water drilling fluids in China and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 85–88.
[6] 高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010 GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 60–67. doi: 10.3969/j.issn.1001-5620.2018.03.010
[7] 黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191–196. HUANG Meng, XU Lin, XU Jie, et al. Evaluation on preparation and performance of rheological modifier used in flat-rheology water-based drilling fluid[J]. Oilfield Chemistry, 2018, 35(2): 191–196.
[8] 程智,仇盛南,曹靖瑜,等. 长裸眼随钻防漏封堵技术在跃满3-3井的应用[J]. 石油钻采工艺,2016,38 (5):612–616. CHENG Zhi, QIU Shengnan, CAO Jingyu, et al. Application of plugging-while-drilling technology in long open-hole interval of the Well Yueman-3-3[J]. Oil Drilling & Production Technology, 2016, 38 (5): 612–616.
[9] 朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(I)[J]. 钻井液与完井液,2009,26(5):60–68, 78. doi: 10.3969/j.issn.1001-5620.2009.05.020 ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Study and application of high temperature drilling fluids (I)[J]. Drilling Fluid & Completion Fluid, 2009, 26(5): 60–68, 78. doi: 10.3969/j.issn.1001-5620.2009.05.020
[10] 朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(II)[J]. 钻井液与完井液,2009,26(6):56–64. doi: 10.3969/j.issn.1001-5620.2009.06.019 ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Study and application of high temperature drilling fluids (II)[J]. Drilling Fluid & Completion Fluid, 2009, 26(6): 56–64. doi: 10.3969/j.issn.1001-5620.2009.06.019
[11] 孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(4):73–81. SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China Univer-sity of Petroleum(Edition of Natural Science), 2019, 43(4): 73–81.
[12] 张坤,黄平,郑有成,等. 高密度水基钻井液CO2污染防治技术[J]. 天然气技术与经济,2011,5(2):48–50. ZHANG Kun, HUANG Ping, ZHENG Youcheng, et al. Prevention of high-density water-base drilling fluid from CO2 pollution[J]. Natural Gas Technology and Economy, 2011, 5(2): 48–50.
[13] 陈馥,杨媚,艾加伟,等. 水基钻井液CO2污染的处理[J]. 钻井液与完井液,2016,33(6):58–62. doi: 10.3969/j.issn.1001-5620.2016.06.010 CHEN Fu, YANG Mei, AI Jiawei, et al. Treatment of CO2 contamination to water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 58–62. doi: 10.3969/j.issn.1001-5620.2016.06.010
[14] 宋华,孙群哲,李锋. 油田用磺化聚丙烯酰胺研究进展[J]. 精细石油化工进展,2013,14(4):1–5. doi: 10.3969/j.issn.1009-8348.2013.04.001 SONG Hua, SUN Qunzhe, LI Feng. Research progress of sulfonated polyacrylamide for oilfield[J]. Advances in Fine Petrochemicals, 2013, 14(4): 1–5. doi: 10.3969/j.issn.1009-8348.2013.04.001
[15] 张光华,屈倩倩,朱军峰,等. SAS/MAA/MPEGMAA 聚羧酸盐分散剂的制备与性能[J]. 化工学报,2014,65(8):3290–3297. doi: 10.3969/j.issn.0438-1157.2014.08.060 ZHANG Guanghua, QU Qianqian, ZHU Junfeng, et al. Synthesis and performance of SAS/MAA/MPEGMAA polycarboxylate dispersants[J]. CIESC Journal, 2014, 65(8): 3290–3297. doi: 10.3969/j.issn.0438-1157.2014.08.060
[16] 王维,赵永光,李战伟,等. 南堡3-81井四开钻井液技术[J]. 断块油气田,2015,22(4):514–517. WANG Wei, ZHAO Yongguang, LI Zhanwei, et al. Technology of fourth spud drilling fluid in Well Nanpu 3-81[J]. Fault-Block Oil & Gas Field, 2015, 22(4): 514–517.
-
期刊类型引用(4)
1. 孙建孟,张颖,王跃祥,吴燕辉,陈洪涛. 基于测井资料的地层压力预测方法研究进展. 测井技术. 2023(02): 119-128 . 百度学术
2. 路保平,王志战,张元春. 碳酸盐岩孔隙压力预监测理论与方法进展. 石油学报. 2022(04): 571-580 . 百度学术
3. 邓嵩,夏一程,赵虹宇,刘成,窦祥骥,曹文科. 塔中地区碳酸盐岩地层压力监测应用研究. 常州大学学报(自然科学版). 2018(03): 71-76 . 百度学术
4. 王志战. 影响孔隙压力预监测成功率的关键因素分析. 录井工程. 2018(01): 1-3+108 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 570
- HTML全文浏览量: 352
- PDF下载量: 139
- 被引次数: 5