刚性堵漏材料几何形态对其在裂缝中滞留行为的影响

康毅力, 张敬逸, 许成元, 游利军, 林冲

康毅力, 张敬逸, 许成元, 游利军, 林冲. 刚性堵漏材料几何形态对其在裂缝中滞留行为的影响[J]. 石油钻探技术, 2018, 46(5): 26-34. DOI: 10.11911/syztjs.2018086
引用本文: 康毅力, 张敬逸, 许成元, 游利军, 林冲. 刚性堵漏材料几何形态对其在裂缝中滞留行为的影响[J]. 石油钻探技术, 2018, 46(5): 26-34. DOI: 10.11911/syztjs.2018086
KANG Yili, ZHANG Jingyi, XU Chengyuan, YOU Lijun, LIN Chong. The Effect of Geometrical Morphology of Rigid Lost Circulation Material on Its Retention Behavior in Fractures[J]. Petroleum Drilling Techniques, 2018, 46(5): 26-34. DOI: 10.11911/syztjs.2018086
Citation: KANG Yili, ZHANG Jingyi, XU Chengyuan, YOU Lijun, LIN Chong. The Effect of Geometrical Morphology of Rigid Lost Circulation Material on Its Retention Behavior in Fractures[J]. Petroleum Drilling Techniques, 2018, 46(5): 26-34. DOI: 10.11911/syztjs.2018086

刚性堵漏材料几何形态对其在裂缝中滞留行为的影响

基金项目: 

国家自然科学基金青年科学"基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制"(编号:51604236)资助。

详细信息
    作者简介:

    康毅力(1964-),男,天津蓟县人,1986年毕业于大庆石油学院石油地质与勘探专业,1989年获西南石油学院矿产普查与勘探专业硕士学位,1998年获西南石油学院石油与天然气工程专业博士学位,教授,博士生导师,主要从事储层保护理论与技术方向的研究工作。

  • 中图分类号: TE28+3

The Effect of Geometrical Morphology of Rigid Lost Circulation Material on Its Retention Behavior in Fractures

  • 摘要: 为了更合理地选择堵漏材料、设计高性能堵漏浆配方,研究了不同几何形态堵漏材料在裂缝中的滞留行为。采用理论分析和室内试验相结合的方法,考虑堵漏材料粒级、几何形状和裂缝面粗糙度等因素,设计并进行了粗糙缝面裂缝内固相滞留试验,考察了堵漏材料的几何形态对其在裂缝中滞留行为的影响。试验发现:粒级对球状和片状堵漏材料在裂缝中的滞留行为均有影响,但对球状堵漏材料滞留行为的影响更显著;相同粒级条件下,片状堵漏材料在裂缝中的滞留概率高于球状堵漏材料。研究结果表明:球状堵漏材料的优点是封堵迅速、封堵效率高,但其封堵质量受粒级影响显著,对缝宽变化适应性较差;片状堵漏材料的优点是对缝宽变化适应性强、滞留概率高;将球状与片状堵漏材料复配,可有效提高其滞留概率,又好又快地封堵裂缝。
    Abstract: In order to select the lost circulation material more reasonably and to design the high performance plugging slurry formulations,the retention behavior of different lost circulation material of various geometrical morphologies in the fractures was studied.Researchers combined theoretical analysis with laboratory tests,and took into consideratoin the influence of grain size grade of lost circulation material,geometrical morphology and fracture surface roughness.They then designed and carried out solid phase retention tests in the rough face fractures to investigate the effect of geometric shape of plugging material on its retention behavior(and embedment)in fractures was investigated.It was found that the grain size grade had an effect on the retention behavior of both spherical material and flaky material in fractures. In fact,the effect on the retention behavior of spherical material was more significant.Specifically,when the material was of the same grain size grade,the retention probability of the flaky material in the fractures was higher than that of the spherical material.The results showed that the spherical material had advantages,including its rapid plugging and high plugging efficiency.However,its plugging quality was seriously affected by grain size grade,and the adaptability to the variation of slot width was poor,while the advantages of flaky material were its strong adaptability to slot width variation and high retention probability.The combination of spherical lost circulation material and flaky lost circulation material could effectively improve the retention and embedment probability and achieve better fracture plugging.
  • [1]

    KANG Yili,XU Chengyuan,YOU Lijun,et al.Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J].Journal of Natural Gas Science and Engineering,2014,20:67-73.

    [2]

    XU Chengyuan,KANG Yili,TANG Long,et al.Prevention of fracture propagation to control drill-in fluid loss in fractured tight gas reservoir[J].Journal of Natural Gas Science and Engineering,2014,21:425-432.

    [3] 罗向东,罗平亚.屏蔽式暂堵技术在储层保护中的应用研究[J].钻井液与完井液,1992,9(2):19-27. LUO Xiangdong,LUO Pingya.Research on the application of temporary shielding method in reservoir protection[J].Drilling Fluid Completion Fluid,1992,9(2):19-27.
    [4]

    ABRAMS A.Mud design to minimize rock impairment due to particle invasion[J].Journal of Petroleum Technology,1976,29(5):586-592.

    [5] 蒋官澄,胡成亮,熊英,等.广谱"油膜"暂堵钻井液体系研究[J].中国石油大学学报(自然科学版), 2006,30(4):53-57. JIANG Guancheng,HU Chengliang,XIONG Ying,et al.Study on system of broad-spectrum oil-film temporary plugging drilling fluid[J].Journal of China University of Petroleum (Edition of Natural Science),2006,30(4):53-57.
    [6] 康毅力,许成元,唐龙,等.构筑井周坚韧屏障:井漏控制理论与方法[J].石油勘探与开发,2014,41(4):473-479. KANG Yili,XU Chengyuan,TANG Long,et al.Constructing a tough shield around the wellbore:theory and method for lost-circulation control[J].Petroleum Exploration and Development,2014,41(4):473-479.
    [7] 李志勇,鄢捷年,王友兵,等.保护储层钻井液优化设计新方法及其应用[J].钻采工艺,2006,29(2):85-87. LI Zhiyong,YAN Jienian,WANG Youbing,et al.New method and application for optimizing design of protected reservoir drilling fluid[J].Drilling Production Technology,2006,29(2):85-87.
    [8]

    HANDS N,KOWBEL K,MAIKRANZ S,et al.Drill-in fluid reduces formation damage,increases production rates[J].Oil and Gas Journal,1998,96(28):65-69.

    [9] 康毅力,郑德壮,刘修善,等.固相侵入对裂缝性碳酸盐岩应力敏感性的影响[J].新疆石油地质,2012,33(3):366-369. KANG Yili,ZHENG Dezhuang,LIU Xiushan,et al.Impact of solids invasion on stress sensitivity in fractured carbonate reservoirs[J].Xinjiang Petroleum Geology,2012,33(3):366-369.
    [10] 李松,康毅力,李大奇,等.缝洞型储层井壁裂缝宽度变化ANSYS模拟研究[J].天然气地球科学,2011,22(2):340-346. LI Song,KANG Yili,LI Daqi,et al.ANSYS simulation on fracture width variation in fracture-cavity reservoirs[J].Natural Gas Geoscience,2011,22(2):340-346.
    [11]

    DICK M A,HEINZ T J,SVOBODA C F,et al.Optimizing the selection of bridging particles for reservoir drilling fluids[R].SPE 58793,2000.

    [12]

    KNAPP R B,CHIARAPPA M L,DURHAM W B.An experimental exploration of the transport and capture of abiotic colloids in a single fracture[J].Water Resources Research,2000,36(11):3139-3149.

    [13]

    YAN Yiguang,KOPLIK J.Transport and sedimentation of suspended particles in inertial pressure-driven flow[J].Physics of Fluids,2009,21(1):297.

    [14]

    XU Chengyuan,KANG Yili,YOU Lijun,et al.Lost-circulation control for formation-damage prevention in naturally fractured reservoir:mathematical model and experimental study[J].SPE Journal,2017,22(5):1654-1670.

    [15]

    AGBANGLA G C,CLIMENT ,BACCHIN P.Numerical investigation of channel blockage by flowing microparticles[J].Computers Fluids,2014,94(2):69-83.

    [16]

    LO T S,KOPLIK J.Suspension flow and sedimentation in self-affine fractures[J].Physics of Fluids,2012,24(5):835-861.

    [17]

    MEHRABIAN A,JAMISON D E,TEODORESCU S G.Geomechanics of lost-circulation events and wellbore-strengthening operations[J].SPE Journal,2015,20(6):437-440.

    [18]

    OORT E V,FRIEDHEIM J,PIERCE T,et al.Avoiding losses in depleted and weak zones by constantly strengthening wellbores[R].SPE 125093,2009.

    [19] 张希文,李爽,张洁,等.钻井液堵漏材料及防漏堵漏技术研究进展[J].钻井液与完井液,2009, 26(6):74-76,79. ZHANG Xiwen,LI Shuang,ZHANG Jie,et al.Research progress of loss control material and loss control technology[J].Drilling Fluid Completion Fluid,2009,26(6):74-76,79.
    [20] 王在明,邱正松,徐加放,等.复合堵漏中平衡区域及其在新型堵漏仪中的应用[J].石油学报,2007,28(1):143-145. WANG Zaiming,QIU Zhengsong,XU Jiafang,et al.Balance area of compound lost circulation control and its application in novel lost circulation simulator[J].Acta Petrolei Sinica,2007,28(1):143-145.
    [21]

    BROWN S R.Fluid flow through rock joints:the effect of surface roughness[J].Journal of Geophysical Research Solid Earth,1987,92(B2):1337-1347.

    [22]

    DAI J,GRACE J R.Blockage of constrictions by particles in fluid-solid transport[J].International Journal of Multiphase Flow,2010,36(1):78-87.

    [23] 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68. WANG Yuan,SU Baoyu.Research on the behavior of fluid flow in a single fracture and its equivalent hydraulic aperture[J].Advances in Water Science,2002,13(1):61-68.
    [24]

    BROWN S R,SCHOLZ C H.Broad bandwidth study of the topography of natural rock surfaces[J].Journal of Geophysical Research Solid Earth,1985,90(B14):12575-12582.

    [25]

    LI Song,KANG Yili,LI Daqi,et al.Modeling herschel-bulkely drilling fluid flow in a variable radial fracture[J].Journal of Porous Media,2014,17(3):239-254.

    [26]

    WINDARTO,GUNAWAN A Y,SUKARNO P,et al.Modelling of formation damage due to mud filtrate invasion in a radial flow system[J].Journal of Petroleum Science Engineering,2012,100:99-105.

  • 期刊类型引用(28)

    1. 彭三兵. 裂缝性地层承压防漏堵漏钻井液技术研究. 石化技术. 2024(05): 165-167 . 百度学术
    2. 郭建春,詹立,路千里,齐天俊,刘彧轩,王欣,陈迟,苟兴豪. 暂堵颗粒在水力裂缝中的封堵行为特征. 石油勘探与开发. 2023(02): 409-415 . 百度学术
    3. 金勇,陈彬,张伟,狄明利,苗海龙. 漏失地层封堵层致密性与承压能力试验研究. 能源化工. 2023(01): 44-47 . 百度学术
    4. 彭浩,李黔,高佳佳,尹虎,陈一凡. 可变形天然裂缝动态宽度流-固耦合计算模型. 西南石油大学学报(自然科学版). 2023(02): 77-86 . 百度学术
    5. GUO Jianchun,ZHAN Li,LU Qianli,QI Tianjun,LIU Yuxuan,WANG Xin,CHEN Chi,GOU Xinghao. Plugging behaviors of temporary plugging particles in hydraulic fractures. Petroleum Exploration and Development. 2023(02): 464-472 . 必应学术
    6. 魏安超,刘书杰,蒋东雷,刘培锴,曾春珉,邱正松,刘钲凯. 裂缝性储层环氧树脂自降解堵漏剂的制备与评价. 钻井液与完井液. 2023(02): 163-168 . 百度学术
    7. 马成云,窦益华,邓金根,冯永存,艾二鑫,赵凯,惠城. 动态裂缝堵漏试验装置的研制与应用. 石油机械. 2023(12): 25-30 . 百度学术
    8. 刘静,马诚,杨超,钟飞升,罗根祥. 井漏地层钻井液堵漏材料研究现状与展望. 油田化学. 2023(04): 729-735 . 百度学术
    9. 宗亭良,谢颖,蔺文浩,韩济. 延长油田钻井工程防漏堵漏技术分析. 中国石油和化工标准与质量. 2023(23): 190-192 . 百度学术
    10. 伍贤柱,胡旭光,韩烈祥,罗园,许期聪,庞平,李黔. 井控技术研究进展与展望. 天然气工业. 2022(02): 133-142 . 百度学术
    11. 宋先知,朱硕,李根生,曾义金,郭慧娟,胡志坚. 基于BP-LSTM双输入网络的大钩载荷与转盘扭矩预测. 中国石油大学学报(自然科学版). 2022(02): 76-84 . 百度学术
    12. 吕开河,王晨烨,雷少飞,孙金声,白英睿,王金堂,王韧,王建龙. 裂缝性地层钻井液漏失规律及堵漏对策. 中国石油大学学报(自然科学版). 2022(02): 85-93 . 百度学术
    13. 冯杰,臧晓宇,邱正松,暴丹,郑力会. 温敏形状记忆堵漏材料实验研究. 钻井液与完井液. 2022(05): 545-549 . 百度学术
    14. 胡耀太,赫英状,易浩,周亚军,严思明. 一种智能结构性流体前置堵漏工作液体系. 广州化工. 2022(23): 168-173 . 百度学术
    15. 郑力会,吴通,陶秀娟,闫振峰,罗江伟,甘茂宗. 稳定井壁封堵材料分类的研究进展. 石油机械. 2021(04): 1-9 . 百度学术
    16. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
    17. 徐延瀚,聂明顺,刘康龙,朱赟. 堵漏工艺实践与分析. 石化技术. 2021(04): 147-150 . 百度学术
    18. 李伟,白英睿,李雨桐,王波,吕开河,张文哲,雷少飞. 钻井液堵漏材料研究及应用现状与堵漏技术对策. 科学技术与工程. 2021(12): 4733-4743 . 百度学术
    19. 康毅力,经浩然,许成元,闫霄鹏,商翔宇. 颗粒形状对裂缝封堵层细观结构稳定性的影响. 西南石油大学学报(自然科学版). 2021(03): 81-92 . 百度学术
    20. 冯永存,马成云,楚明明,钟毅,邓金根. 刚性颗粒封堵裂缝地层漏失机制数值模拟. 天然气工业. 2021(07): 93-100 . 百度学术
    21. 许成元,张洪琳,康毅力,游利军,方俊伟,张敬逸,闫霄鹏,谢智超,周贺翔. 深层裂缝性储层物理类堵漏材料定量评价优选方法. 天然气工业. 2021(12): 99-109 . 百度学术
    22. 暴丹,邱正松,叶链,钟汉毅,赵欣,邱维清,王宝田,郭保雨. 热致形状记忆“智能”型堵漏剂的制备与特性实验. 石油学报. 2020(01): 106-115 . 百度学术
    23. 方俊伟,张翼,李双贵,于培志,李银婷. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术. 石油钻探技术. 2020(02): 17-22 . 本站查看
    24. 孙金声,雷少飞,白英睿,王玺,吕开河,柳丙善,王金堂,戴彩丽,刘敬平. 智能材料在钻井液堵漏领域研究进展和应用展望. 中国石油大学学报(自然科学版). 2020(04): 100-110 . 百度学术
    25. 康毅力,邵佳新,游利军,高新平,陈明君,谭启贵,韩慧芬. 储气库井注气压力剧变诱发微粒运移实验模拟. 石油钻采工艺. 2020(06): 797-803+810 . 百度学术
    26. 杨川,刘忠飞,肖勇,石庆,李晓春,郑锟. 库车山前构造高温高压储层环空密封固井技术. 断块油气田. 2019(02): 264-268 . 百度学术
    27. 杨建永. 低密度水基钻井液在长深易漏区块深层水平井的应用. 石油和化工设备. 2019(07): 54-56 . 百度学术
    28. 敖明明,付美龙,徐传奇,李雪娇,孙晶. 适用于高温高盐油藏的RX-颗粒堵剂注入参数优化. 断块油气田. 2019(06): 789-793 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  4348
  • HTML全文浏览量:  147
  • PDF下载量:  6814
  • 被引次数: 38
出版历程
  • 收稿日期:  2017-10-15
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回