Numerical Simulation of Cement Displacement in Eccentric Annulus at Highly Deviated Wells
-
摘要: 为了进一步了解大斜度井注水泥顶替机理,提高注水泥顶替效率,借助计算流体力学软件Fluent,建立了大斜度井环空三维模型,采用流体体积法进行了水泥浆顶替钻井液的数值模拟研究。分析了井斜角、偏心度以及水泥浆与钻井液的密度差对顶替效率和顶替界面稳定性的影响规律:增大井斜角会降低注水泥顶替效率;在大斜度井偏心环空中,随着水泥浆与钻井液密度差的增大,顶替效率先增大后降低;在大斜度井中,套管偏心并不完全是降低顶替效率,当套管具有一定偏心(建议偏心度取为0.1~0.2)时,可在一定程度上阻止由于正密度差造成的水泥浆在环空低侧窄间隙突进,从而提高顶替效率。通过数值模拟,总结了大斜度井与直井注水泥顶替机理的区别,为大斜度井注水泥顶替参数设计提供了一定的参考和理论依据。Abstract: In order to understand the displacement mechanism and improve displacement efficiency in highly deviated well,three-dimensional annular model was developed using the CFD software Fluent,and numerical simulation studied with drilling fluid displaced by cement slurry by means of VOF method.The paper studied the influences of deviation angle,casing eccentricity and density difference between cement slurry and drilling mud on displacement efficiency and stability of displacement interface.The simulation results indicated that wellbores with a high deviation angle have lower displacement efficiency;in an eccentric annulus at highly deviated section,the displacement efficiency first increases then decreases with the increase of density difference between cement slurry and drilling fluid;casing eccentricity is not absolutely a factor reducing displacement efficiency in highly deviated well.A certain casing eccentricity (eccentricity 0.1-0.2 proposed) can eliminate fingering caused by the density difference to some extent in narrow annulus at lower side,and improve displacement efficiency.After numerical simulation study on cement displacement,the displacement mechanism differences between highly deviated wells and vertical wells were identified,which provides reference and basis for optimizing displacement parameters in the design of cementing for highly deviated wells.
-
-
[1] Frigaard I A,Allouche M,Gabard-Cuoq C.Setting rheological targets for chemical solutions in mud removal and cement slurry design.SPE 64998,2001.
[2] 杨建波,邓建民,黎泽寒,等.低速注水泥过程中密度差对顶替效率的影响[J].石油钻探技术,2007,35(5):79-82. Yang Jianbo,Deng Jianmin,Li Zehan,et al.Effect of density difference on displacement efficiency during low-rate cementing[J].Petroleum Drilling Techniques,2007,35(5):79-82. [3] Lockyear C F,Hibbert A P.Integrated primary cementing study defines key factors for field success[J].JPT,1989,41(12):1320-1325.
[4] Lockyear C F,Ryan D F,Gunningham M M.Cement channelling:how to predict and prevent[J].SPE Drilling Engineering,1990,5(3):201-208.
[5] Couturier M,Guillot D,Hendriks H,et al.Design rules and associated spacer properties for optimal mud removal in eccentric annuli.SPE 21594,1990.
[6] Keller S R,Crook R J,Haut R C.Deviated-wellbore cementing:part 1:problems [J].JPT,1987,39(8):955-960.
[7] 郑永刚.定向井层流注水泥顶替的机理[J].石油学报,1995,16(4):133-139. Zheng Yonggang.Displacement mechanism of laminar flow cementing in deviated wells[J].Acta Petrolei Sinica,1995,16(4):133-139. [8] 杨建波,邓建民,冯予淇,等.低速注水泥时密度差对顶替效率影响规律的数值模拟研究[J].石油钻探技术,2008,36(5):62-65. Yang Jianbo,Deng Jianmin,Feng Yuqi,et al.Numerical simulation of effect of density difference on displacement efficiency at low cement slurry velocity[J].Petroleum Drilling Techniques,2008,36(5):62-65. [9] 高永海,孙宝江,刘东清,等.环空水泥浆顶替界面稳定性数值模拟研究[J].石油学报,2005,26(5):119-122. Gao Yonghai,Sun Baojiang,Liu Dongqing,et al.Numerical simulation on stability of cement displacement interface in annulus[J].Acta Petrolei Sinica,2005,26(5):119-122. [10] 周仕明,李根生,方春飞.元坝地区146.1 mm尾管固井技术难点与对策[J].石油钻探技术,2010,38(4):41-44. Zhou Shiming,Li Gensheng,Fang Chunfei.Difficulties and countermeasures for 146.1 mm liner cementing in Yuanba Area[J].Petroleum Drilling Techniques,2010,38(4):41-44. [11] 王斌斌,王瑞和,步玉环.不同流态下水泥浆环空顶替的数值模拟研究[J].钻井液与完井液,2010,27(3):76-78. Wang Binbin,Wang Ruihe,Bu Yuhuan.Numerical simulation on cementing displacement in different flow patterns[J].Drilling Fluid Completion Fluid,2010,27(3):76-78. [12] Eduardo S S Dutra,Mnica F Naccache,Paulo R Souza Mendes.Analysis of interface between Newtonian and non-Newtonian fluids inside annular eccentric tubes:ASME 2004 International Mechanical Engineering Congress and Exposition,Anaheim,California,November 13-19,2004.
[13] 李兆敏,蔡国琰.非牛顿流体力学[M].东营:石油大学出版社,2001:50-52. Li Zhaomin,Cai Guoyan.Non-Newtoinan fluid mechanics[M].Dongying:Petroleum University Press,2001:50-52. [14] 刘希圣.钻井工艺原理:下册[M].东营:石油大学出版社,1988:106-111. Liu Xisheng.Drilling technology:Ⅱ[M].Dongying:Petroleum University Press,1998:106-111. [15] 郑永刚,刘孝良,陈英,等.大斜度井及水平井注水泥顶替机理实验研究[J].石油钻探技术,1993,21(1):22-25. Zheng Yonggang,Liu Xiaoliang,Chen Ying,et al.A experimental study of displacement mechanical in highly deviated wells and horizontal wells[J].Petroleum Drilling Techniques,1993,21(1):22-25. [16] 范伟华.定向井、水平井注水泥顶替规律研究.成都:西南石油大学,2008. Fan Weihua.Study on the law of cementing displacement in directional wells and horizontal wells[J].Chengdu:Southwest Petroleum University,2008. [17] 刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001:292-296. Liu Chongjian,Huang Bozong,Xu Tongtai,et al.Theories and applications of oil and gas well cementing[M].Beijing:Petroleum Industry Press,2001:292-296. [18] Q/SH 0014-2007 川东北天然气井固井技术规范[S]. Q/SH 0014-2007 Cementing specification for gas well in the northeast of Sichuan[S]. -
期刊类型引用(12)
1. 皮光林. 美国页岩油气产业现状及工程技术演进趋势. 当代石油石化. 2023(05): 6-9 . 百度学术
2. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
3. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
4. 杨书博,乔文孝,赵琪琪,倪卫宁,吴金平. 随钻前视声波测井钻头前方声场特征研究. 石油钻探技术. 2021(02): 113-120 . 本站查看
5. 刘媛,董易凡,刘博卿,杨圣方. 对外合作企业在降本增效中的技术创新. 石油工业技术监督. 2020(03): 55-57+62 . 百度学术
6. 李晓平,石祥超,李皋,李昆成. 新时期石油与天然气工程研究生培养目标定位探讨. 教育教学论坛. 2020(52): 99-101 . 百度学术
7. 王国申. 石油钻井自动化关键技术应用. 中国石油和化工标准与质量. 2020(24): 177-179 . 百度学术
8. 路保平,倪卫宁. 高精度随钻成像测井关键技术. 石油钻探技术. 2019(03): 148-155 . 本站查看
9. 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向. 石油钻探技术. 2019(05): 1-10 . 本站查看
10. 刘晓峰,党万恒,梁振琪. 海洋石油完井技术现状及发展趋势. 石化技术. 2019(10): 194+333 . 百度学术
11. 光新军,王敏生,叶海超,皮光林. 我国油气工程领域“卡脖子”技术分析及发展对策建议. 石油科技论坛. 2019(05): 32-39 . 百度学术
12. 郑奕挺,方方,吴金平,钱德儒,张卫. 近钻头随钻伽马成像快速正弦曲线拟合方法. 石油钻探技术. 2019(06): 116-122 . 本站查看
其他类型引用(3)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 15